Inconel X-750弹簧的应力腐蚀开裂

{"title":"Inconel X-750弹簧的应力腐蚀开裂","authors":"","doi":"10.31399/asm.fach.power.c0048158","DOIUrl":null,"url":null,"abstract":"\n Several of the springs, made of 1.1 mm diam Inconel X-750 wire and used for tightening the interstage packing ring in a high-pressure turbine, were found broken after approximately seven years of operation. Intergranular cracks about 1.3 mm in depth and oriented at an angle of 45 deg to the axis of the wire were revealed by metallographic examination. A light-gray phase, which had the appearance of liquid-metal corrosion, was observed to have penetrated the grains on the fracture surfaces. The spring wires were found to fracture in a brittle manner characteristic of fracture from torsional loading (along a plane 45 deg to the wire axis). Liquid-metal embrittlement was expected to have been caused by metals (Sn, Zn, Pb) which melt much below maximum service temperature of the turbine. The springs were concluded to have fractured by intergranular stress-corrosion cracking promoted by the action of liquid zinc and tin in combination with static and torsional stresses on the spring wire. As a corrective measure, Na, Sn, and Zn which were present in pigmented oil used as a lubricant during spring winding was cleaned thoroughly by the spring manufacturer before shipment to remove all contaminants.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress-Corrosion Cracking of Inconel X-750 Springs\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.power.c0048158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Several of the springs, made of 1.1 mm diam Inconel X-750 wire and used for tightening the interstage packing ring in a high-pressure turbine, were found broken after approximately seven years of operation. Intergranular cracks about 1.3 mm in depth and oriented at an angle of 45 deg to the axis of the wire were revealed by metallographic examination. A light-gray phase, which had the appearance of liquid-metal corrosion, was observed to have penetrated the grains on the fracture surfaces. The spring wires were found to fracture in a brittle manner characteristic of fracture from torsional loading (along a plane 45 deg to the wire axis). Liquid-metal embrittlement was expected to have been caused by metals (Sn, Zn, Pb) which melt much below maximum service temperature of the turbine. The springs were concluded to have fractured by intergranular stress-corrosion cracking promoted by the action of liquid zinc and tin in combination with static and torsional stresses on the spring wire. As a corrective measure, Na, Sn, and Zn which were present in pigmented oil used as a lubricant during spring winding was cleaned thoroughly by the spring manufacturer before shipment to remove all contaminants.\",\"PeriodicalId\":107406,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.power.c0048158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Power Generating Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.power.c0048158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

其中几个弹簧由直径1.1毫米的英科耐尔X-750钢丝制成,用于拧紧高压涡轮的级间填料环,在大约7年的运行后被发现断裂。金相检查发现,晶粒间裂纹深度约为1.3 mm,与线材轴线呈45度角。在断口表面观察到一种浅灰色相渗透到晶粒中,具有液态金属腐蚀的特征。弹簧钢丝断裂呈脆性断裂,具有扭转载荷断裂的特征(沿与钢丝轴线45度的平面)。液态金属脆化预计是由于金属(Sn, Zn, Pb)在远低于涡轮机最高使用温度的情况下熔化造成的。结果表明,弹簧断裂是由锌液和锡液的共同作用以及弹簧丝上的静应力和扭转应力共同引起的晶间应力腐蚀开裂。作为一项纠正措施,在弹簧缠绕过程中作为润滑剂的颜料油中存在的Na, Sn和Zn在装运前由弹簧制造商彻底清洗以去除所有污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stress-Corrosion Cracking of Inconel X-750 Springs
Several of the springs, made of 1.1 mm diam Inconel X-750 wire and used for tightening the interstage packing ring in a high-pressure turbine, were found broken after approximately seven years of operation. Intergranular cracks about 1.3 mm in depth and oriented at an angle of 45 deg to the axis of the wire were revealed by metallographic examination. A light-gray phase, which had the appearance of liquid-metal corrosion, was observed to have penetrated the grains on the fracture surfaces. The spring wires were found to fracture in a brittle manner characteristic of fracture from torsional loading (along a plane 45 deg to the wire axis). Liquid-metal embrittlement was expected to have been caused by metals (Sn, Zn, Pb) which melt much below maximum service temperature of the turbine. The springs were concluded to have fractured by intergranular stress-corrosion cracking promoted by the action of liquid zinc and tin in combination with static and torsional stresses on the spring wire. As a corrective measure, Na, Sn, and Zn which were present in pigmented oil used as a lubricant during spring winding was cleaned thoroughly by the spring manufacturer before shipment to remove all contaminants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Intergranular Stress Corrosion Cracking in the Fuel Pool at Three Mile Island Unit 1 Intergranular Fatigue Cracking of a Stainless Steel Expansion Joint Another Turbogenerator Failure Turbine Blade Failure Dezincification of Brass Tubes in a Steam Turbine Condenser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1