{"title":"基于非晶硅光传感器的大面积混合探测器技术","authors":"A. Nascetti, G. de Cesare, D. Caputo","doi":"10.1109/IWASI.2009.5184763","DOIUrl":null,"url":null,"abstract":"A technological approach for the fabrication of large area hybrid detectors is presented. The proposed hybrid detector consists in an array of hydrogenated amorphous silicon photodiodes directly connected to a CMOS readout chip, which is vertically integrated over the sensor array using flip-chip bonding. In particular, the proposed solution relies on a stack of interconnection layers, deposited on top of the photodiode array, to route each individual pixel output to a separate pre-amplifier channel. This avoids the need for a geometrical matching between the sensor array and the chip contact pads. As a consequence, conventiona non-pixelated readout chip can be used and easy-scalable large area detectors can be produced. Furthermore the sensor array and the readout chip can be optimized independently leading to additional advantages as fast readout, implementation of in-pixel signal conditioning and pre-processing and superior noise performances. Experimental results validating all the technological steps involved in the fabrication of the hybrid detector are reported in detail.","PeriodicalId":246540,"journal":{"name":"2009 3rd International Workshop on Advances in sensors and Interfaces","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large area hybrid detector technology based on amorphous silicon photosensors\",\"authors\":\"A. Nascetti, G. de Cesare, D. Caputo\",\"doi\":\"10.1109/IWASI.2009.5184763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technological approach for the fabrication of large area hybrid detectors is presented. The proposed hybrid detector consists in an array of hydrogenated amorphous silicon photodiodes directly connected to a CMOS readout chip, which is vertically integrated over the sensor array using flip-chip bonding. In particular, the proposed solution relies on a stack of interconnection layers, deposited on top of the photodiode array, to route each individual pixel output to a separate pre-amplifier channel. This avoids the need for a geometrical matching between the sensor array and the chip contact pads. As a consequence, conventiona non-pixelated readout chip can be used and easy-scalable large area detectors can be produced. Furthermore the sensor array and the readout chip can be optimized independently leading to additional advantages as fast readout, implementation of in-pixel signal conditioning and pre-processing and superior noise performances. Experimental results validating all the technological steps involved in the fabrication of the hybrid detector are reported in detail.\",\"PeriodicalId\":246540,\"journal\":{\"name\":\"2009 3rd International Workshop on Advances in sensors and Interfaces\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 3rd International Workshop on Advances in sensors and Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWASI.2009.5184763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Workshop on Advances in sensors and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI.2009.5184763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large area hybrid detector technology based on amorphous silicon photosensors
A technological approach for the fabrication of large area hybrid detectors is presented. The proposed hybrid detector consists in an array of hydrogenated amorphous silicon photodiodes directly connected to a CMOS readout chip, which is vertically integrated over the sensor array using flip-chip bonding. In particular, the proposed solution relies on a stack of interconnection layers, deposited on top of the photodiode array, to route each individual pixel output to a separate pre-amplifier channel. This avoids the need for a geometrical matching between the sensor array and the chip contact pads. As a consequence, conventiona non-pixelated readout chip can be used and easy-scalable large area detectors can be produced. Furthermore the sensor array and the readout chip can be optimized independently leading to additional advantages as fast readout, implementation of in-pixel signal conditioning and pre-processing and superior noise performances. Experimental results validating all the technological steps involved in the fabrication of the hybrid detector are reported in detail.