基于卡尔曼滤波算法的OFDM系统信道估计

Visakh A, Navneet Upadhyay
{"title":"基于卡尔曼滤波算法的OFDM系统信道估计","authors":"Visakh A, Navneet Upadhyay","doi":"10.1145/2185216.2185240","DOIUrl":null,"url":null,"abstract":"This paper presents the Kalman filter (KF) based channel estimation algorithm for orthogonal frequency division multiplexing (OFDM) systems. The cyclic prefix (CP) portion of the OFDM symbols is used for extracting the channel state information. The KF algorithm computes a channel estimate based on the information contained in the cyclic prefix. This channel estimation algorithm is compared with the classical least squares (LS) estimation approach. The simulation result shows that the KF algorithm outperforms then LS method. Absence of pilot signals and better adaptability to channel variations are other advantages of the KF method.","PeriodicalId":180836,"journal":{"name":"International Conference on Wireless Technologies for Humanitarian Relief","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Channel estimation for OFDM systems using Kalman filter algorithm\",\"authors\":\"Visakh A, Navneet Upadhyay\",\"doi\":\"10.1145/2185216.2185240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the Kalman filter (KF) based channel estimation algorithm for orthogonal frequency division multiplexing (OFDM) systems. The cyclic prefix (CP) portion of the OFDM symbols is used for extracting the channel state information. The KF algorithm computes a channel estimate based on the information contained in the cyclic prefix. This channel estimation algorithm is compared with the classical least squares (LS) estimation approach. The simulation result shows that the KF algorithm outperforms then LS method. Absence of pilot signals and better adaptability to channel variations are other advantages of the KF method.\",\"PeriodicalId\":180836,\"journal\":{\"name\":\"International Conference on Wireless Technologies for Humanitarian Relief\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Wireless Technologies for Humanitarian Relief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2185216.2185240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Wireless Technologies for Humanitarian Relief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185216.2185240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于卡尔曼滤波的正交频分复用(OFDM)信道估计算法。OFDM符号的循环前缀(CP)部分用于提取信道状态信息。KF算法根据循环前缀中包含的信息计算信道估计。将该信道估计算法与经典的最小二乘估计方法进行了比较。仿真结果表明,KF算法优于LS方法。KF方法的另一个优点是没有导频信号和对信道变化有更好的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel estimation for OFDM systems using Kalman filter algorithm
This paper presents the Kalman filter (KF) based channel estimation algorithm for orthogonal frequency division multiplexing (OFDM) systems. The cyclic prefix (CP) portion of the OFDM symbols is used for extracting the channel state information. The KF algorithm computes a channel estimate based on the information contained in the cyclic prefix. This channel estimation algorithm is compared with the classical least squares (LS) estimation approach. The simulation result shows that the KF algorithm outperforms then LS method. Absence of pilot signals and better adaptability to channel variations are other advantages of the KF method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A simultaneous routing and localization algorithm for wireless sensor networks in emergency scenario Monitoring Schumann resonance and other electromagnetic precursors of an earthquake with a virtual MIMO wireless sensor network Some comments on wireless sensor networks for natural hazards KARSHIK: agricultural information monitoring and reference based on wireless networks Robust RF fingerprinting techniques in 4G networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1