{"title":"介质中超子与反超子动力学的非线性导数模型","authors":"Arsenia Chorozidou, T. Gaitanos","doi":"10.12681/hnps.3574","DOIUrl":null,"url":null,"abstract":"The in-medium properties of hyperons and antihyperons are studied with the Non-Linear Derivative (NLD) model and focus is made on the momentum dependence of strangeness optical potentials[1]. The NLD model is based on the Relativistic Mean Field (RMF) approximation to Relativistic Hadrodynamics (RHD) approach of nuclear systems, but it incorporates an explicit momentum dependence of mean-fields. The extension of the NLD model to the baryon and antibaryon octet is based on SU(6) and G-parity arguments. It is demonstrated that with a proper choice of momentum cut-offs, the Λ and Σ optical potentials are consistent with recent studies of the chiral effective field theory and Ξ optical potentials are consistent with Lattice-QCD calculations, over a wide momentum region. We also present NLD predictions for the in-medium momentum dependence of antiΛ, antiΣ and antiΞ hyperons. This work is important for future experimental studies, like CBM, PANDA at FAIR and is relevant to nuclear astrophysics as well.","PeriodicalId":262803,"journal":{"name":"HNPS Advances in Nuclear Physics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Non-Linear Derivative (NLD) model for the in-medium hyperons & antihyperons dynamics\",\"authors\":\"Arsenia Chorozidou, T. Gaitanos\",\"doi\":\"10.12681/hnps.3574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The in-medium properties of hyperons and antihyperons are studied with the Non-Linear Derivative (NLD) model and focus is made on the momentum dependence of strangeness optical potentials[1]. The NLD model is based on the Relativistic Mean Field (RMF) approximation to Relativistic Hadrodynamics (RHD) approach of nuclear systems, but it incorporates an explicit momentum dependence of mean-fields. The extension of the NLD model to the baryon and antibaryon octet is based on SU(6) and G-parity arguments. It is demonstrated that with a proper choice of momentum cut-offs, the Λ and Σ optical potentials are consistent with recent studies of the chiral effective field theory and Ξ optical potentials are consistent with Lattice-QCD calculations, over a wide momentum region. We also present NLD predictions for the in-medium momentum dependence of antiΛ, antiΣ and antiΞ hyperons. This work is important for future experimental studies, like CBM, PANDA at FAIR and is relevant to nuclear astrophysics as well.\",\"PeriodicalId\":262803,\"journal\":{\"name\":\"HNPS Advances in Nuclear Physics\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HNPS Advances in Nuclear Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12681/hnps.3574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HNPS Advances in Nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/hnps.3574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Non-Linear Derivative (NLD) model for the in-medium hyperons & antihyperons dynamics
The in-medium properties of hyperons and antihyperons are studied with the Non-Linear Derivative (NLD) model and focus is made on the momentum dependence of strangeness optical potentials[1]. The NLD model is based on the Relativistic Mean Field (RMF) approximation to Relativistic Hadrodynamics (RHD) approach of nuclear systems, but it incorporates an explicit momentum dependence of mean-fields. The extension of the NLD model to the baryon and antibaryon octet is based on SU(6) and G-parity arguments. It is demonstrated that with a proper choice of momentum cut-offs, the Λ and Σ optical potentials are consistent with recent studies of the chiral effective field theory and Ξ optical potentials are consistent with Lattice-QCD calculations, over a wide momentum region. We also present NLD predictions for the in-medium momentum dependence of antiΛ, antiΣ and antiΞ hyperons. This work is important for future experimental studies, like CBM, PANDA at FAIR and is relevant to nuclear astrophysics as well.