二氧化氮预测的探索性分析与特征选择

Ditsuhi Iskandaryan, S. Di Sabatino, Francisco Ramos, S. Trilles
{"title":"二氧化氮预测的探索性分析与特征选择","authors":"Ditsuhi Iskandaryan, S. Di Sabatino, Francisco Ramos, S. Trilles","doi":"10.5194/agile-giss-3-6-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Nitrogen dioxide is one of the most hazardous pollutants identified by the World Health Organisation. Predicting and reducing pollutants is becoming a very urgent task and many methods have been used to predict their concentration, such as physical or machine learning models. In addition to choosing the right model, it is also critical to choose the appropriate features. This work focuses on the spatiotemporal prediction of nitrogen dioxide concentration using Bidirectional Convolutional LSTM integrated with the exploration of nitrogen dioxide and associated features, as well as the implementation of feature selection methods. The Root Mean Square Error and the Mean Absolute Error were used to evaluate the proposed approach.\n","PeriodicalId":116168,"journal":{"name":"AGILE: GIScience Series","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Exploratory Analysis and Feature Selection for the Prediction of Nitrogen Dioxide\",\"authors\":\"Ditsuhi Iskandaryan, S. Di Sabatino, Francisco Ramos, S. Trilles\",\"doi\":\"10.5194/agile-giss-3-6-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Nitrogen dioxide is one of the most hazardous pollutants identified by the World Health Organisation. Predicting and reducing pollutants is becoming a very urgent task and many methods have been used to predict their concentration, such as physical or machine learning models. In addition to choosing the right model, it is also critical to choose the appropriate features. This work focuses on the spatiotemporal prediction of nitrogen dioxide concentration using Bidirectional Convolutional LSTM integrated with the exploration of nitrogen dioxide and associated features, as well as the implementation of feature selection methods. The Root Mean Square Error and the Mean Absolute Error were used to evaluate the proposed approach.\\n\",\"PeriodicalId\":116168,\"journal\":{\"name\":\"AGILE: GIScience Series\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGILE: GIScience Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/agile-giss-3-6-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGILE: GIScience Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/agile-giss-3-6-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要二氧化氮是世界卫生组织认定的最危险的污染物之一。预测和减少污染物正在成为一项非常紧迫的任务,许多方法被用来预测它们的浓度,例如物理或机器学习模型。除了选择正确的模型之外,选择合适的特性也很关键。本文主要研究了利用双向卷积LSTM对二氧化氮浓度进行时空预测,并结合二氧化氮及其相关特征的探索,以及特征选择方法的实现。用均方根误差和平均绝对误差对所提出的方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploratory Analysis and Feature Selection for the Prediction of Nitrogen Dioxide
Abstract. Nitrogen dioxide is one of the most hazardous pollutants identified by the World Health Organisation. Predicting and reducing pollutants is becoming a very urgent task and many methods have been used to predict their concentration, such as physical or machine learning models. In addition to choosing the right model, it is also critical to choose the appropriate features. This work focuses on the spatiotemporal prediction of nitrogen dioxide concentration using Bidirectional Convolutional LSTM integrated with the exploration of nitrogen dioxide and associated features, as well as the implementation of feature selection methods. The Root Mean Square Error and the Mean Absolute Error were used to evaluate the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Is it safe to be attractive? Disentangling the influence of streetscape features on the perceived safety and attractiveness of city streets Satellite parking: a new method for measuring parking occupancy Semantic complexity of geographic questions - A comparison in terms of conceptual transformations of answers Development of an inclusive Mapping Application in a Co-Design Process Visualizing of the below-ground water network infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1