{"title":"Analisis Sentimen Opini Publik Terhadap Undang-Undang Cipta Kerja pada Twitter Menggunakan Metode Naive Bayes Classifier","authors":"Yanuar Nurdiansyah, Fatchur Rahman, Priza Pandunata","doi":"10.54706/senastindo.v3.2021.158","DOIUrl":null,"url":null,"abstract":"Analisis sentiment atau Opinion Mining merupakan cara memecahkan suatu permasalahan berdasarkan opini masyarakat yang beredar luas di media sosial yang diekspresikan dalam bentuk teks. analisis sentimen sangat membantu pemerintahan/ suatu instansi dalam mengetahui opini publik mengenai suatu kebijakan yang baru saja dikeluarkan tanpa menggunakan metode survey konvensional. Pada analisis sentimen yang dilakukan berfokus pada Trending topik tweet pada Twitter dengan trending topic pada tanggal 5 sampai 10 oktober yaitu #Omnibuslaw, #tolakruuciptakerja, #UUCiptaKerja, dan #tolakomnibuslaw, dan trending topic pada tanggal 21 dan 22 november yaitu \"obl makmurkan buruh\". Proses Analisis sentimen dilakukan setelah data didapatkan pada tahapan crawling data, dilanjutkan dengan pembersihan kata pada proses preprocessing, dan pembobotan kata dengan algoritma TF-IDF. Analisis sentimen menggunakan metode naive bayes classifier bertujuan agar mendapatkan klasifikasi mengenai opini publik terhadap undang-undang cipta kerja pada twitter. Terdapat dua kelas pada penelitian ini yaitu kelas positif, dan negatif. Dari 2000 dataset yang terdiri dari 1400 tweet yang bersentimen negatif & 600 tweet yang bersifat positif dipakai akan dibagi antara data training dan data testing dengan perbandingan sebesar 60%:40%, 70%:30%, 80%:20%, dan 90%:10%. Dari hasil evaluasi pada Analisis sentimen mengenai opini publik terhadap undang-undang cipta kerja pada twitter didapatkan nilai akurasi tertinggi sebesar 94% dengan data training yang dipakai sebesar 90%, data testing sebesar 10%. Pada implementasinya, hasil dari uji sentimen menunjukkan hasil sentimen negatif yang lebih tinggi dibandingkan sentimen positif.","PeriodicalId":142905,"journal":{"name":"Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO)","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54706/senastindo.v3.2021.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis Sentimen Opini Publik Terhadap Undang-Undang Cipta Kerja pada Twitter Menggunakan Metode Naive Bayes Classifier
Analisis sentiment atau Opinion Mining merupakan cara memecahkan suatu permasalahan berdasarkan opini masyarakat yang beredar luas di media sosial yang diekspresikan dalam bentuk teks. analisis sentimen sangat membantu pemerintahan/ suatu instansi dalam mengetahui opini publik mengenai suatu kebijakan yang baru saja dikeluarkan tanpa menggunakan metode survey konvensional. Pada analisis sentimen yang dilakukan berfokus pada Trending topik tweet pada Twitter dengan trending topic pada tanggal 5 sampai 10 oktober yaitu #Omnibuslaw, #tolakruuciptakerja, #UUCiptaKerja, dan #tolakomnibuslaw, dan trending topic pada tanggal 21 dan 22 november yaitu "obl makmurkan buruh". Proses Analisis sentimen dilakukan setelah data didapatkan pada tahapan crawling data, dilanjutkan dengan pembersihan kata pada proses preprocessing, dan pembobotan kata dengan algoritma TF-IDF. Analisis sentimen menggunakan metode naive bayes classifier bertujuan agar mendapatkan klasifikasi mengenai opini publik terhadap undang-undang cipta kerja pada twitter. Terdapat dua kelas pada penelitian ini yaitu kelas positif, dan negatif. Dari 2000 dataset yang terdiri dari 1400 tweet yang bersentimen negatif & 600 tweet yang bersifat positif dipakai akan dibagi antara data training dan data testing dengan perbandingan sebesar 60%:40%, 70%:30%, 80%:20%, dan 90%:10%. Dari hasil evaluasi pada Analisis sentimen mengenai opini publik terhadap undang-undang cipta kerja pada twitter didapatkan nilai akurasi tertinggi sebesar 94% dengan data training yang dipakai sebesar 90%, data testing sebesar 10%. Pada implementasinya, hasil dari uji sentimen menunjukkan hasil sentimen negatif yang lebih tinggi dibandingkan sentimen positif.