探索最优滤波器结构的卷积层加速

Hsi-Ling Chen, J. Yang, Song-An Mao
{"title":"探索最优滤波器结构的卷积层加速","authors":"Hsi-Ling Chen, J. Yang, Song-An Mao","doi":"10.1109/RASSE54974.2022.9989667","DOIUrl":null,"url":null,"abstract":"CNN models are becoming more and more mature, many of them adopt deeper structures to better accomplish the task objectives, such that the increased computational and storage burdens are unfavorable for the implementation in edge devices. In this paper, we propose an approach to optimize the filter structure by starting from the convolutional filter and finding their minimum structure. The reductions of the filters for the minimum structure in terms of space and channels, the number of model parameters and the computational complexity are effectively reduced. Since the current channel pruning method prunes the same channel for each convolutional layer, which easily leads to a trade-off between the pruning rate and accuracy loss. Instead we propose a new channel pruning approach to find the most suitable required channels for each filter to provide a more detailed pruning method. Experiments conducted on the classification CNN models, such as VGG16 and ResNet56, show that the proposed method can successfully reduce the computations of the models without losing much model accuracy effectively. The proposed method performs well in compressing the model and reducing the number of parameters required by the models for real applications.","PeriodicalId":382440,"journal":{"name":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Layers Acceleration By Exploring Optimal Filter Structures\",\"authors\":\"Hsi-Ling Chen, J. Yang, Song-An Mao\",\"doi\":\"10.1109/RASSE54974.2022.9989667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CNN models are becoming more and more mature, many of them adopt deeper structures to better accomplish the task objectives, such that the increased computational and storage burdens are unfavorable for the implementation in edge devices. In this paper, we propose an approach to optimize the filter structure by starting from the convolutional filter and finding their minimum structure. The reductions of the filters for the minimum structure in terms of space and channels, the number of model parameters and the computational complexity are effectively reduced. Since the current channel pruning method prunes the same channel for each convolutional layer, which easily leads to a trade-off between the pruning rate and accuracy loss. Instead we propose a new channel pruning approach to find the most suitable required channels for each filter to provide a more detailed pruning method. Experiments conducted on the classification CNN models, such as VGG16 and ResNet56, show that the proposed method can successfully reduce the computations of the models without losing much model accuracy effectively. The proposed method performs well in compressing the model and reducing the number of parameters required by the models for real applications.\",\"PeriodicalId\":382440,\"journal\":{\"name\":\"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RASSE54974.2022.9989667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RASSE54974.2022.9989667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

CNN模型越来越成熟,许多模型采用更深层次的结构来更好地完成任务目标,这增加了计算和存储负担,不利于在边缘设备中实现。本文提出了一种从卷积滤波器入手,寻找其最小结构来优化滤波器结构的方法。有效地减少了最小结构滤波器在空间和通道、模型参数数量和计算复杂度方面的缩减。由于目前的通道剪枝方法对每个卷积层都进行相同的通道剪枝,这容易导致在剪枝速率和精度损失之间进行权衡。相反,我们提出了一种新的通道修剪方法,为每个滤波器找到最合适的所需通道,以提供更详细的修剪方法。在VGG16和ResNet56等分类CNN模型上进行的实验表明,本文提出的方法可以有效地减少模型的计算量,而不会损失太多的模型精度。该方法在压缩模型和减少模型所需参数数量方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolutional Layers Acceleration By Exploring Optimal Filter Structures
CNN models are becoming more and more mature, many of them adopt deeper structures to better accomplish the task objectives, such that the increased computational and storage burdens are unfavorable for the implementation in edge devices. In this paper, we propose an approach to optimize the filter structure by starting from the convolutional filter and finding their minimum structure. The reductions of the filters for the minimum structure in terms of space and channels, the number of model parameters and the computational complexity are effectively reduced. Since the current channel pruning method prunes the same channel for each convolutional layer, which easily leads to a trade-off between the pruning rate and accuracy loss. Instead we propose a new channel pruning approach to find the most suitable required channels for each filter to provide a more detailed pruning method. Experiments conducted on the classification CNN models, such as VGG16 and ResNet56, show that the proposed method can successfully reduce the computations of the models without losing much model accuracy effectively. The proposed method performs well in compressing the model and reducing the number of parameters required by the models for real applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design 4x1 Space-Time Conjugate Two-Path Full-Rate OFDM Systems YOLO-Based Deep-Learning Gaze Estimation Technology by Combining Geometric Feature and Appearance Based Technologies for Smart Advertising Displays Graph Neural Networks for HD EMG-based Movement Intention Recognition: An Initial Investigation Bert Based Chinese Sentiment Analysis for Automatic Censoring of Dynamic Electronic Scroll An Image Feature Points Assisted Point Cloud Matching Scheme in Odometry Estimation for SLAM Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1