基于碳纳米管低功耗异或门的节能压缩机设计与分析

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Circuits Devices & Systems Pub Date : 2021-11-03 DOI:10.1049/cds2.12100
Elmira Tavakkoli, Mahdi Aminian
{"title":"基于碳纳米管低功耗异或门的节能压缩机设计与分析","authors":"Elmira Tavakkoli,&nbsp;Mahdi Aminian","doi":"10.1049/cds2.12100","DOIUrl":null,"url":null,"abstract":"<p>Compressors are the fundamental components in multipliers to accumulate and reduce partial product stages in a parallel manner. This study presents several architectures for low-power 4-2 and 5-2 compressors, which are based on the proposed circuits of the full-swing and non-full-swing XOR gates in carbon nanotube field effect transistor (CNTFET) technology. The CNTFET technology has been chosen because of its unique electrical and mechanical features. The proposed circuits are investigated in terms of process, voltage and temperature variations, delay, power dissipation, energy, power-delay product (PDP) and transistor count. All the proposed and referenced designs are simulated using an HSPICE tool in a 32 nm CNTFET Stanford technology model. The results show that the proposed circuits have less PDP and power consumption than the previous work. The proposed compressors have the lowest PDP, achieving 5.8%–41.9% improvement.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 3","pages":"240-256"},"PeriodicalIF":1.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12100","citationCount":"1","resultStr":"{\"title\":\"Design and analysis of energy-efficient compressors based on low-power XOR gates in carbon nanotube technology\",\"authors\":\"Elmira Tavakkoli,&nbsp;Mahdi Aminian\",\"doi\":\"10.1049/cds2.12100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Compressors are the fundamental components in multipliers to accumulate and reduce partial product stages in a parallel manner. This study presents several architectures for low-power 4-2 and 5-2 compressors, which are based on the proposed circuits of the full-swing and non-full-swing XOR gates in carbon nanotube field effect transistor (CNTFET) technology. The CNTFET technology has been chosen because of its unique electrical and mechanical features. The proposed circuits are investigated in terms of process, voltage and temperature variations, delay, power dissipation, energy, power-delay product (PDP) and transistor count. All the proposed and referenced designs are simulated using an HSPICE tool in a 32 nm CNTFET Stanford technology model. The results show that the proposed circuits have less PDP and power consumption than the previous work. The proposed compressors have the lowest PDP, achieving 5.8%–41.9% improvement.</p>\",\"PeriodicalId\":50386,\"journal\":{\"name\":\"Iet Circuits Devices & Systems\",\"volume\":\"16 3\",\"pages\":\"240-256\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12100\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Circuits Devices & Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12100\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12100","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

压缩机是乘数器中以并行方式累积和减少部分乘积级的基本部件。本研究提出了几种基于碳纳米管场效应晶体管(CNTFET)技术中全摆幅和非全摆幅异或门电路的低功耗4-2和5-2压缩机架构。选择CNTFET技术是因为其独特的电气和机械特性。从工艺、电压和温度变化、延迟、功耗、能量、功率延迟积(PDP)和晶体管数量等方面对所提出的电路进行了研究。所有提出的和参考的设计都使用HSPICE工具在32nm CNTFET斯坦福技术模型中进行了模拟。结果表明,该电路具有较低的PDP和功耗。所提出的压缩机PDP最低,改善5.8%-41.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and analysis of energy-efficient compressors based on low-power XOR gates in carbon nanotube technology

Compressors are the fundamental components in multipliers to accumulate and reduce partial product stages in a parallel manner. This study presents several architectures for low-power 4-2 and 5-2 compressors, which are based on the proposed circuits of the full-swing and non-full-swing XOR gates in carbon nanotube field effect transistor (CNTFET) technology. The CNTFET technology has been chosen because of its unique electrical and mechanical features. The proposed circuits are investigated in terms of process, voltage and temperature variations, delay, power dissipation, energy, power-delay product (PDP) and transistor count. All the proposed and referenced designs are simulated using an HSPICE tool in a 32 nm CNTFET Stanford technology model. The results show that the proposed circuits have less PDP and power consumption than the previous work. The proposed compressors have the lowest PDP, achieving 5.8%–41.9% improvement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Circuits Devices & Systems
Iet Circuits Devices & Systems 工程技术-工程:电子与电气
CiteScore
3.80
自引率
7.70%
发文量
32
审稿时长
3 months
期刊介绍: IET Circuits, Devices & Systems covers the following topics: Circuit theory and design, circuit analysis and simulation, computer aided design Filters (analogue and switched capacitor) Circuit implementations, cells and architectures for integration including VLSI Testability, fault tolerant design, minimisation of circuits and CAD for VLSI Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs Device and process characterisation, device parameter extraction schemes Mathematics of circuits and systems theory Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers
期刊最新文献
A 2-GHz GaN HEMT Power Amplifier Harmonically Tuned Using a Compact One-Port CRLH Transmission Line An Efficient Approximate Multiplier with Encoded Partial Products and Inexact Counter for Joint Photographic Experts Group Compression Synthetic Aperture Interferometric Passive Radiometer Imaging to Locate Electromagnetic Leakage From Spacecraft Surface Simultaneous Optimal Allocation of EVCSs and RESs Using an Improved Genetic Method Intelligent Control of Surgical Robot for Telesurgery: An Application to Smart Healthcare Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1