基于PSO-GRU预测的超短期风电功率预测方法研究

Lu Gao, Lianjia Zhao, Fanmiao Kong, Xiaolin Zhang
{"title":"基于PSO-GRU预测的超短期风电功率预测方法研究","authors":"Lu Gao, Lianjia Zhao, Fanmiao Kong, Xiaolin Zhang","doi":"10.1109/ICNISC57059.2022.00195","DOIUrl":null,"url":null,"abstract":"Wind power is an important source of electricity for the national grid. The unstable characteristics of wind make scheduling and decision-making problems for power companies. Therefore, it is necessary to improve the accuracy of predicted wind power. To solve this problem, this paper adopts the particle swarm optimization algorithm (PSO) to optimize the GRU neural network method, and selects the optimal combination of GRU hyperparameters through PSO to determine the most suitable network topology. The experimental experiment in this paper uses the measured power data of a wind farm in Inner Mongolia as the data set. And use root mean square error and mean absolute error as evaluation criteria. The experimental results show that the algorithm proposed in this paper achieves better experimental results in power prediction, and achieves higher prediction accuracy compared with BPNN, SVR and other models. It proves that the model can achieve good results in wind power prediction. It has practical application value.","PeriodicalId":286467,"journal":{"name":"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Method of Ultra-short-term Wind Power Prediction Based on PSO-GRU Prediction\",\"authors\":\"Lu Gao, Lianjia Zhao, Fanmiao Kong, Xiaolin Zhang\",\"doi\":\"10.1109/ICNISC57059.2022.00195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind power is an important source of electricity for the national grid. The unstable characteristics of wind make scheduling and decision-making problems for power companies. Therefore, it is necessary to improve the accuracy of predicted wind power. To solve this problem, this paper adopts the particle swarm optimization algorithm (PSO) to optimize the GRU neural network method, and selects the optimal combination of GRU hyperparameters through PSO to determine the most suitable network topology. The experimental experiment in this paper uses the measured power data of a wind farm in Inner Mongolia as the data set. And use root mean square error and mean absolute error as evaluation criteria. The experimental results show that the algorithm proposed in this paper achieves better experimental results in power prediction, and achieves higher prediction accuracy compared with BPNN, SVR and other models. It proves that the model can achieve good results in wind power prediction. It has practical application value.\",\"PeriodicalId\":286467,\"journal\":{\"name\":\"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC57059.2022.00195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC57059.2022.00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风力发电是国家电网的重要电力来源。风电的不稳定性给电力公司的调度和决策带来了难题。因此,有必要提高风电功率预测的准确性。针对这一问题,本文采用粒子群优化算法(PSO)对GRU神经网络进行优化的方法,通过PSO选择GRU超参数的最优组合,确定最合适的网络拓扑结构。本文的实验实验以内蒙古某风电场实测功率数据作为数据集。并以均方根误差和平均绝对误差作为评价标准。实验结果表明,本文提出的算法在功率预测方面取得了较好的实验结果,与BPNN、SVR等模型相比,具有更高的预测精度。实践证明,该模型在风电功率预测中取得了较好的效果。具有实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research Method of Ultra-short-term Wind Power Prediction Based on PSO-GRU Prediction
Wind power is an important source of electricity for the national grid. The unstable characteristics of wind make scheduling and decision-making problems for power companies. Therefore, it is necessary to improve the accuracy of predicted wind power. To solve this problem, this paper adopts the particle swarm optimization algorithm (PSO) to optimize the GRU neural network method, and selects the optimal combination of GRU hyperparameters through PSO to determine the most suitable network topology. The experimental experiment in this paper uses the measured power data of a wind farm in Inner Mongolia as the data set. And use root mean square error and mean absolute error as evaluation criteria. The experimental results show that the algorithm proposed in this paper achieves better experimental results in power prediction, and achieves higher prediction accuracy compared with BPNN, SVR and other models. It proves that the model can achieve good results in wind power prediction. It has practical application value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Untrained Emitter Detection Based on SK-GAND Network Design of High Efficiency Photovoltaic Sound Barrier Study on Intelligent Heterogeneous Computing Technology for Reliable-critical Application Exploring the Seismogenic Structure of the 2016 Yanhu Earthquake Swarm Using Template-based Recognition Techniques The Simulation of the Signal Detection Algorithm in MIMO System Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1