Dimitrios Boucharas, Christos Androutsos, N. Tachos, E. Tripoliti, Dimitrios Manousos, Vasileios Skaramagkas, Emmanouil Ktistakis, M. Tsiknakis, D. Fotiadis
{"title":"探索利用惯性传感器实时识别人类活动的人工智能方法","authors":"Dimitrios Boucharas, Christos Androutsos, N. Tachos, E. Tripoliti, Dimitrios Manousos, Vasileios Skaramagkas, Emmanouil Ktistakis, M. Tsiknakis, D. Fotiadis","doi":"10.1109/BIBE52308.2021.9635486","DOIUrl":null,"url":null,"abstract":"The aim of this work is to present two different algorithmic pipelines for human activity recognition (HAR) in real time, exploiting inertial measurement unit (IMU) sensors. Various learning classifiers have been developed and tested across different datasets. The experimental results provide a comparative performance analysis based on accuracy and latency during fine-tuning, training and prediction. The overall accuracy of the proposed pipeline reaches 66 % in the publicly available dataset and 90% in the in-house one.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring Artificial Intelligence methods for recognizing human activities in real time by exploiting inertial sensors\",\"authors\":\"Dimitrios Boucharas, Christos Androutsos, N. Tachos, E. Tripoliti, Dimitrios Manousos, Vasileios Skaramagkas, Emmanouil Ktistakis, M. Tsiknakis, D. Fotiadis\",\"doi\":\"10.1109/BIBE52308.2021.9635486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to present two different algorithmic pipelines for human activity recognition (HAR) in real time, exploiting inertial measurement unit (IMU) sensors. Various learning classifiers have been developed and tested across different datasets. The experimental results provide a comparative performance analysis based on accuracy and latency during fine-tuning, training and prediction. The overall accuracy of the proposed pipeline reaches 66 % in the publicly available dataset and 90% in the in-house one.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Artificial Intelligence methods for recognizing human activities in real time by exploiting inertial sensors
The aim of this work is to present two different algorithmic pipelines for human activity recognition (HAR) in real time, exploiting inertial measurement unit (IMU) sensors. Various learning classifiers have been developed and tested across different datasets. The experimental results provide a comparative performance analysis based on accuracy and latency during fine-tuning, training and prediction. The overall accuracy of the proposed pipeline reaches 66 % in the publicly available dataset and 90% in the in-house one.