Sam Michiels, Lieven Desmet, N. Janssens, Tom Mahieu, P. Verbaeten
{"title":"自适应并发性:DMonA架构","authors":"Sam Michiels, Lieven Desmet, N. Janssens, Tom Mahieu, P. Verbaeten","doi":"10.1145/582128.582137","DOIUrl":null,"url":null,"abstract":"A major problem in todays Internet servers is that they suffer from extreme peak loads. Traditional (operating) systems are designed to perform extremely well under heavy load conditions. However, it is not feasible to over-provision resources only to support peak loads. A key factor to deal with such peak loads is internal concurrency control. We have developed a component based architecture (DMonA), which allows to adapt internal concurrency according to measured throughput. Performance tests show that DMonA outperforms traditional approaches, while it is still very manageable thanks to the underlying DiPS component architecture.","PeriodicalId":326554,"journal":{"name":"Workshop on Self-Healing Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Self-adapting concurrency: the DMonA architecture\",\"authors\":\"Sam Michiels, Lieven Desmet, N. Janssens, Tom Mahieu, P. Verbaeten\",\"doi\":\"10.1145/582128.582137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A major problem in todays Internet servers is that they suffer from extreme peak loads. Traditional (operating) systems are designed to perform extremely well under heavy load conditions. However, it is not feasible to over-provision resources only to support peak loads. A key factor to deal with such peak loads is internal concurrency control. We have developed a component based architecture (DMonA), which allows to adapt internal concurrency according to measured throughput. Performance tests show that DMonA outperforms traditional approaches, while it is still very manageable thanks to the underlying DiPS component architecture.\",\"PeriodicalId\":326554,\"journal\":{\"name\":\"Workshop on Self-Healing Systems\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Self-Healing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/582128.582137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Self-Healing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/582128.582137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A major problem in todays Internet servers is that they suffer from extreme peak loads. Traditional (operating) systems are designed to perform extremely well under heavy load conditions. However, it is not feasible to over-provision resources only to support peak loads. A key factor to deal with such peak loads is internal concurrency control. We have developed a component based architecture (DMonA), which allows to adapt internal concurrency according to measured throughput. Performance tests show that DMonA outperforms traditional approaches, while it is still very manageable thanks to the underlying DiPS component architecture.