基于脑电图频繁子图技术的痴呆相关疾病分类

A. T. Adebisi, V. Gonuguntla, Ho-Won Lee, K. Veluvolu
{"title":"基于脑电图频繁子图技术的痴呆相关疾病分类","authors":"A. T. Adebisi, V. Gonuguntla, Ho-Won Lee, K. Veluvolu","doi":"10.1109/ICDMW51313.2020.00087","DOIUrl":null,"url":null,"abstract":"Dementia associated disorders such as vascular dementia, frontotemporal dementia and Alzheimer dementia lead to cognitive impairment. Discrimination of dementia associated disorders has reamined a challenging task as they have overlapping underlying complex structures and display similar clinical features. In this work, we explore an EEG based frequent subgraph searching technique to characterize stages of brain functional networks of mild cognitive impairment (MCI), Alzheimer's disease (AD) and vascular dementia (VD) subjects in comparison with healthy control (HC) subjects. To identify the frequent subgraph related to dementia, we first formulated the brain functional network based on the phase information of EEG with mutual information as a measure. The whole network is then divided into sub-regions and frequent sub-graph search is performed. The identified frequent subgraphs were employed to discriminate the dementia associated disorders from the data recorded from 10 healthy and 32 dementia subjects in various stages. Results show that the proposed method has the potential to quantify the disease progression using brain functional connectivity and the identified networks can aid in the diagnosis of dementia associated disorders.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Dementia Associated Disorders Using EEG based Frequent Subgraph Technique\",\"authors\":\"A. T. Adebisi, V. Gonuguntla, Ho-Won Lee, K. Veluvolu\",\"doi\":\"10.1109/ICDMW51313.2020.00087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dementia associated disorders such as vascular dementia, frontotemporal dementia and Alzheimer dementia lead to cognitive impairment. Discrimination of dementia associated disorders has reamined a challenging task as they have overlapping underlying complex structures and display similar clinical features. In this work, we explore an EEG based frequent subgraph searching technique to characterize stages of brain functional networks of mild cognitive impairment (MCI), Alzheimer's disease (AD) and vascular dementia (VD) subjects in comparison with healthy control (HC) subjects. To identify the frequent subgraph related to dementia, we first formulated the brain functional network based on the phase information of EEG with mutual information as a measure. The whole network is then divided into sub-regions and frequent sub-graph search is performed. The identified frequent subgraphs were employed to discriminate the dementia associated disorders from the data recorded from 10 healthy and 32 dementia subjects in various stages. Results show that the proposed method has the potential to quantify the disease progression using brain functional connectivity and the identified networks can aid in the diagnosis of dementia associated disorders.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

痴呆相关疾病,如血管性痴呆、额颞叶痴呆和阿尔茨海默氏痴呆,会导致认知障碍。痴呆症相关疾病的鉴别仍然是一项具有挑战性的任务,因为它们具有重叠的潜在复杂结构并表现出相似的临床特征。在这项工作中,我们探索了一种基于脑电图的频繁子图搜索技术,以表征轻度认知障碍(MCI)、阿尔茨海默病(AD)和血管性痴呆(VD)受试者与健康对照组(HC)受试者的脑功能网络阶段。为了识别与痴呆相关的频繁子图,我们首先以互信息为度量,建立了基于脑电相位信息的脑功能网络。然后将整个网络划分为子区域,并进行频繁的子图搜索。利用识别出的频繁子图从10名健康受试者和32名不同阶段的痴呆受试者的数据中区分痴呆相关疾病。结果表明,所提出的方法具有利用脑功能连接来量化疾病进展的潜力,并且确定的网络可以帮助诊断痴呆症相关疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Dementia Associated Disorders Using EEG based Frequent Subgraph Technique
Dementia associated disorders such as vascular dementia, frontotemporal dementia and Alzheimer dementia lead to cognitive impairment. Discrimination of dementia associated disorders has reamined a challenging task as they have overlapping underlying complex structures and display similar clinical features. In this work, we explore an EEG based frequent subgraph searching technique to characterize stages of brain functional networks of mild cognitive impairment (MCI), Alzheimer's disease (AD) and vascular dementia (VD) subjects in comparison with healthy control (HC) subjects. To identify the frequent subgraph related to dementia, we first formulated the brain functional network based on the phase information of EEG with mutual information as a measure. The whole network is then divided into sub-regions and frequent sub-graph search is performed. The identified frequent subgraphs were employed to discriminate the dementia associated disorders from the data recorded from 10 healthy and 32 dementia subjects in various stages. Results show that the proposed method has the potential to quantify the disease progression using brain functional connectivity and the identified networks can aid in the diagnosis of dementia associated disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Data by Principal Component Analysis Deep Contextualized Word Embedding for Text-based Online User Profiling to Detect Social Bots on Twitter Integration of Fuzzy and Deep Learning in Three-Way Decisions Mining Heterogeneous Data for Formulation Design Restructuring of Hoeffding Trees for Trapezoidal Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1