M. Askarpour, Livia Lestingi, Federico Buran, M. Rossi, F. Vicentini
{"title":"基于模型驱动的安全协作机器人应用设计风险分析","authors":"M. Askarpour, Livia Lestingi, Federico Buran, M. Rossi, F. Vicentini","doi":"10.1109/ICHMS49158.2020.9209450","DOIUrl":null,"url":null,"abstract":"In human-robot collaboration (HRC), humans and robots share the same workspace while executing hybrid tasks. Their close proximity imposes higher possibility of contacts that could potentially be dangerous. Hence, physical safety and risk analysis become of utmost importance during system design.In this paper, we propose a tool-supported interactive technique that facilitates the design of safe HRC systems for designers by performing iterative risk analysis and suggesting risk reduction measures (RRMs) to mitigate unsafe physical contacts.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model-driven Risk Analysis for the Design of Safe Collaborative Robotic Applications\",\"authors\":\"M. Askarpour, Livia Lestingi, Federico Buran, M. Rossi, F. Vicentini\",\"doi\":\"10.1109/ICHMS49158.2020.9209450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In human-robot collaboration (HRC), humans and robots share the same workspace while executing hybrid tasks. Their close proximity imposes higher possibility of contacts that could potentially be dangerous. Hence, physical safety and risk analysis become of utmost importance during system design.In this paper, we propose a tool-supported interactive technique that facilitates the design of safe HRC systems for designers by performing iterative risk analysis and suggesting risk reduction measures (RRMs) to mitigate unsafe physical contacts.\",\"PeriodicalId\":132917,\"journal\":{\"name\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Human-Machine Systems (ICHMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICHMS49158.2020.9209450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-driven Risk Analysis for the Design of Safe Collaborative Robotic Applications
In human-robot collaboration (HRC), humans and robots share the same workspace while executing hybrid tasks. Their close proximity imposes higher possibility of contacts that could potentially be dangerous. Hence, physical safety and risk analysis become of utmost importance during system design.In this paper, we propose a tool-supported interactive technique that facilitates the design of safe HRC systems for designers by performing iterative risk analysis and suggesting risk reduction measures (RRMs) to mitigate unsafe physical contacts.