稀疏系统的低成本子空间跟踪算法

Nacerredine Lassami, K. Abed-Meraim, A. Aïssa-El-Bey
{"title":"稀疏系统的低成本子空间跟踪算法","authors":"Nacerredine Lassami, K. Abed-Meraim, A. Aïssa-El-Bey","doi":"10.23919/EUSIPCO.2017.8081439","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on tracking the signal subspace under a sparsity constraint. More specifically, we propose a two-step approach to solve the considered problem whether the sparsity constraint is on the system weight matrix or on the source signals. The first step uses the OPAST algorithm for an adaptive extraction of an orthonormal basis of the principal subspace, then an estimation of the desired weight matrix is done in the second step, taking into account the sparsity constraint. The resulting algorithms: SS-OPAST and DS-OPAST have low computational complexity (suitable in the adaptive context) and they achieve both good convergence and estimation performance as illustrated by our simulation experiments for different application scenarios.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Low cost subspace tracking algorithms for sparse systems\",\"authors\":\"Nacerredine Lassami, K. Abed-Meraim, A. Aïssa-El-Bey\",\"doi\":\"10.23919/EUSIPCO.2017.8081439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on tracking the signal subspace under a sparsity constraint. More specifically, we propose a two-step approach to solve the considered problem whether the sparsity constraint is on the system weight matrix or on the source signals. The first step uses the OPAST algorithm for an adaptive extraction of an orthonormal basis of the principal subspace, then an estimation of the desired weight matrix is done in the second step, taking into account the sparsity constraint. The resulting algorithms: SS-OPAST and DS-OPAST have low computational complexity (suitable in the adaptive context) and they achieve both good convergence and estimation performance as illustrated by our simulation experiments for different application scenarios.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文主要研究在稀疏性约束下的信号子空间跟踪问题。更具体地说,我们提出了一种两步法来解决所考虑的稀疏性约束是在系统权矩阵上还是在源信号上的问题。第一步使用OPAST算法自适应提取主子空间的标准正交基,然后在考虑稀疏性约束的情况下,在第二步对期望的权矩阵进行估计。所得算法SS-OPAST和DS-OPAST具有较低的计算复杂度(适用于自适应环境),并且在不同应用场景下具有良好的收敛性能和估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low cost subspace tracking algorithms for sparse systems
In this paper, we focus on tracking the signal subspace under a sparsity constraint. More specifically, we propose a two-step approach to solve the considered problem whether the sparsity constraint is on the system weight matrix or on the source signals. The first step uses the OPAST algorithm for an adaptive extraction of an orthonormal basis of the principal subspace, then an estimation of the desired weight matrix is done in the second step, taking into account the sparsity constraint. The resulting algorithms: SS-OPAST and DS-OPAST have low computational complexity (suitable in the adaptive context) and they achieve both good convergence and estimation performance as illustrated by our simulation experiments for different application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1