使用自动编码器网络的过程建模

M. E. Yümer, P. Asente, R. Mech, L. Kara
{"title":"使用自动编码器网络的过程建模","authors":"M. E. Yümer, P. Asente, R. Mech, L. Kara","doi":"10.1145/2807442.2807448","DOIUrl":null,"url":null,"abstract":"Procedural modeling systems allow users to create high quality content through parametric, conditional or stochastic rule sets. While such approaches create an abstraction layer by freeing the user from direct geometry editing, the nonlinear nature and the high number of parameters associated with such design spaces result in arduous modeling experiences for non-expert users. We propose a method to enable intuitive exploration of such high dimensional procedural modeling spaces within a lower dimensional space learned through autoencoder network training. Our method automatically generates a representative training dataset from the procedural modeling rule set based on shape similarity features. We then leverage the samples in this dataset to train an autoencoder neural network, while also structuring the learned lower dimensional space for continuous exploration with respect to shape features. We demonstrate the efficacy our method with user studies where designers create content with more than 10-fold faster speeds using our system compared to the classic procedural modeling interface.","PeriodicalId":103668,"journal":{"name":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Procedural Modeling Using Autoencoder Networks\",\"authors\":\"M. E. Yümer, P. Asente, R. Mech, L. Kara\",\"doi\":\"10.1145/2807442.2807448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Procedural modeling systems allow users to create high quality content through parametric, conditional or stochastic rule sets. While such approaches create an abstraction layer by freeing the user from direct geometry editing, the nonlinear nature and the high number of parameters associated with such design spaces result in arduous modeling experiences for non-expert users. We propose a method to enable intuitive exploration of such high dimensional procedural modeling spaces within a lower dimensional space learned through autoencoder network training. Our method automatically generates a representative training dataset from the procedural modeling rule set based on shape similarity features. We then leverage the samples in this dataset to train an autoencoder neural network, while also structuring the learned lower dimensional space for continuous exploration with respect to shape features. We demonstrate the efficacy our method with user studies where designers create content with more than 10-fold faster speeds using our system compared to the classic procedural modeling interface.\",\"PeriodicalId\":103668,\"journal\":{\"name\":\"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807442.2807448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807442.2807448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

程序建模系统允许用户通过参数、条件或随机规则集创建高质量的内容。虽然这种方法通过将用户从直接的几何编辑中解放出来,创建了一个抽象层,但与这种设计空间相关的非线性性质和大量参数导致非专业用户的艰苦建模体验。我们提出了一种方法,可以在通过自编码器网络训练学习的低维空间中直观地探索这种高维过程建模空间。该方法基于形状相似特征,从过程建模规则集自动生成具有代表性的训练数据集。然后,我们利用该数据集中的样本来训练一个自编码器神经网络,同时还构建学习到的低维空间,以便根据形状特征进行持续探索。我们通过用户研究证明了我们的方法的有效性,在用户研究中,设计师使用我们的系统创建内容的速度比传统的过程建模界面快10倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Procedural Modeling Using Autoencoder Networks
Procedural modeling systems allow users to create high quality content through parametric, conditional or stochastic rule sets. While such approaches create an abstraction layer by freeing the user from direct geometry editing, the nonlinear nature and the high number of parameters associated with such design spaces result in arduous modeling experiences for non-expert users. We propose a method to enable intuitive exploration of such high dimensional procedural modeling spaces within a lower dimensional space learned through autoencoder network training. Our method automatically generates a representative training dataset from the procedural modeling rule set based on shape similarity features. We then leverage the samples in this dataset to train an autoencoder neural network, while also structuring the learned lower dimensional space for continuous exploration with respect to shape features. We demonstrate the efficacy our method with user studies where designers create content with more than 10-fold faster speeds using our system compared to the classic procedural modeling interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology Push-Push: A Drag-like Operation Overlapped with a Page Transition Operation on Touch Interfaces Gaze-Shifting: Direct-Indirect Input with Pen and Touch Modulated by Gaze LaserStacker: Fabricating 3D Objects by Laser Cutting and Welding Capture-Time Feedback for Recording Scripted Narration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1