不同地表覆盖下土壤蒸发的半经验模型模拟

Suying Chen, Xiying Zhang, Silong Chen, Pei Dong, Hongyong Sun
{"title":"不同地表覆盖下土壤蒸发的半经验模型模拟","authors":"Suying Chen, Xiying Zhang, Silong Chen, Pei Dong, Hongyong Sun","doi":"10.1117/12.682846","DOIUrl":null,"url":null,"abstract":"Minimizing soil evaporation is a key element in improving water use efficiency in dry areas. Experiments were conducted in the winter wheat field during 2004-2005 to compare effects of different row spacing on soil evaporation. A model to estimate soil evaporation was developed based on the experimental data. The reference crop evapotranspiration (ET0) was estimated by the Penman-Montieth equation, and the factors affecting evaporation under crop canopy were divided into both the radiation item (ETs1) and the aerodynamics item (ETs2) according to the degree of crop canopy coverage (fc). The simulation equation for actual evaporation, combining with soil moisture parameter, was established in this paper. In this study, a light meter was utilized to measure fc, which replaced leaf are index (LAI) in evaporation estimation. In comparison with the measured evaporation by micro-lysimeters (ML) in four row spacing: 7.5 cm, 15 cm, 22.5 cm and 30 cm, tested in a randomized block design, the simulated daily evaporation had root mean square errors (RMSE) of 0.22 mm, 0.24 mm, 0.25 mm 0.26 mm and a bias of 0.01 mm, 0.02 mm, -0.08 mm, -0.03 mm respectively. Results showed that using canopy coverage factor to replace leaf area index could effectively estimate soil evaporation.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of soil evaporation under different ground coverage with semi-empirical models\",\"authors\":\"Suying Chen, Xiying Zhang, Silong Chen, Pei Dong, Hongyong Sun\",\"doi\":\"10.1117/12.682846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimizing soil evaporation is a key element in improving water use efficiency in dry areas. Experiments were conducted in the winter wheat field during 2004-2005 to compare effects of different row spacing on soil evaporation. A model to estimate soil evaporation was developed based on the experimental data. The reference crop evapotranspiration (ET0) was estimated by the Penman-Montieth equation, and the factors affecting evaporation under crop canopy were divided into both the radiation item (ETs1) and the aerodynamics item (ETs2) according to the degree of crop canopy coverage (fc). The simulation equation for actual evaporation, combining with soil moisture parameter, was established in this paper. In this study, a light meter was utilized to measure fc, which replaced leaf are index (LAI) in evaporation estimation. In comparison with the measured evaporation by micro-lysimeters (ML) in four row spacing: 7.5 cm, 15 cm, 22.5 cm and 30 cm, tested in a randomized block design, the simulated daily evaporation had root mean square errors (RMSE) of 0.22 mm, 0.24 mm, 0.25 mm 0.26 mm and a bias of 0.01 mm, 0.02 mm, -0.08 mm, -0.03 mm respectively. Results showed that using canopy coverage factor to replace leaf area index could effectively estimate soil evaporation.\",\"PeriodicalId\":406438,\"journal\":{\"name\":\"SPIE Optics + Photonics\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.682846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.682846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽量减少土壤蒸发是提高干旱地区水分利用效率的关键因素。2004-2005年在冬小麦大田试验中,比较了不同行距对土壤蒸发的影响。在试验数据的基础上,建立了估算土壤蒸发的模型。利用Penman-Montieth方程估算作物参考蒸散发(ET0),并根据作物冠层覆盖程度(fc)将影响作物冠层下蒸散发的因子分为辐射项(ETs1)和空气动力学项(ETs2)。结合土壤水分参数,建立了实际蒸发量的模拟方程。在本研究中,利用光度计测量fc,取代叶片指数(LAI)估算蒸发量。在随机区组设计中,与微型蒸发仪(ML)在7.5 cm、15 cm、22.5 cm和30 cm行距下的蒸发量进行比较,模拟的日蒸发量均方根误差(RMSE)分别为0.22 mm、0.24 mm、0.25 mm、0.26 mm,偏差分别为0.01 mm、0.02 mm、-0.08 mm、-0.03 mm。结果表明,利用冠层盖度代替叶面积指数可以有效地估算土壤蒸发量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of soil evaporation under different ground coverage with semi-empirical models
Minimizing soil evaporation is a key element in improving water use efficiency in dry areas. Experiments were conducted in the winter wheat field during 2004-2005 to compare effects of different row spacing on soil evaporation. A model to estimate soil evaporation was developed based on the experimental data. The reference crop evapotranspiration (ET0) was estimated by the Penman-Montieth equation, and the factors affecting evaporation under crop canopy were divided into both the radiation item (ETs1) and the aerodynamics item (ETs2) according to the degree of crop canopy coverage (fc). The simulation equation for actual evaporation, combining with soil moisture parameter, was established in this paper. In this study, a light meter was utilized to measure fc, which replaced leaf are index (LAI) in evaporation estimation. In comparison with the measured evaporation by micro-lysimeters (ML) in four row spacing: 7.5 cm, 15 cm, 22.5 cm and 30 cm, tested in a randomized block design, the simulated daily evaporation had root mean square errors (RMSE) of 0.22 mm, 0.24 mm, 0.25 mm 0.26 mm and a bias of 0.01 mm, 0.02 mm, -0.08 mm, -0.03 mm respectively. Results showed that using canopy coverage factor to replace leaf area index could effectively estimate soil evaporation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neural network for image-to-image control of optical tweezers Atmospheric turbulence simulation using liquid crystal spatial light modulators Atmospheric simulation using a liquid crystal wavefront-controlling device Spectral sensitivity of the circadian system Generating entangled states of two ququarts using linear optical elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1