智能电网中电力变压器状态的概率监测

J. Aizpurua, Unai Garro, E. Muxika, M. Mendicute, I. Gilbert, B. Stewart, S. Mcarthur, B. Lambert
{"title":"智能电网中电力变压器状态的概率监测","authors":"J. Aizpurua, Unai Garro, E. Muxika, M. Mendicute, I. Gilbert, B. Stewart, S. Mcarthur, B. Lambert","doi":"10.23919/ARWtr.2019.8930193","DOIUrl":null,"url":null,"abstract":"Power transformers are critical assets for the correct and reliable operation of the power grid. However, the use of power transformers in the context of smart grids creates new challenges for efficient lifetime management and maintenance planning. The use of intermittent sources of energy and dynamic loads increases the sources of uncertainty and causes non-linear operation dynamics. In addition, the increased use of probabilistic forecasting models for the estimation of influential parameters such as temperature or load, influences the uncertainty associated with the transformer lifetime estimation. These variable operation mechanisms influence the operation and lifetime planning of power transformers. Accordingly, this paper presents a novel probabilistic health state estimation framework to improve the lifetime management of power transformers operated in smart grids through the integration of probabilistic forecasting models with Monte Carlo based Bayesian filtering methods.","PeriodicalId":117389,"journal":{"name":"2019 6th International Advanced Research Workshop on Transformers (ARWtr)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Probabilistic Power Transformer Condition Monitoring in Smart Grids\",\"authors\":\"J. Aizpurua, Unai Garro, E. Muxika, M. Mendicute, I. Gilbert, B. Stewart, S. Mcarthur, B. Lambert\",\"doi\":\"10.23919/ARWtr.2019.8930193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power transformers are critical assets for the correct and reliable operation of the power grid. However, the use of power transformers in the context of smart grids creates new challenges for efficient lifetime management and maintenance planning. The use of intermittent sources of energy and dynamic loads increases the sources of uncertainty and causes non-linear operation dynamics. In addition, the increased use of probabilistic forecasting models for the estimation of influential parameters such as temperature or load, influences the uncertainty associated with the transformer lifetime estimation. These variable operation mechanisms influence the operation and lifetime planning of power transformers. Accordingly, this paper presents a novel probabilistic health state estimation framework to improve the lifetime management of power transformers operated in smart grids through the integration of probabilistic forecasting models with Monte Carlo based Bayesian filtering methods.\",\"PeriodicalId\":117389,\"journal\":{\"name\":\"2019 6th International Advanced Research Workshop on Transformers (ARWtr)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Advanced Research Workshop on Transformers (ARWtr)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ARWtr.2019.8930193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Advanced Research Workshop on Transformers (ARWtr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ARWtr.2019.8930193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电力变压器是保证电网正确、可靠运行的重要设备。然而,在智能电网的背景下使用电力变压器为有效的生命周期管理和维护计划带来了新的挑战。间歇性能源和动态负荷的使用增加了不确定性的来源,并导致非线性运行动力学。此外,越来越多地使用概率预测模型来估计有影响的参数,如温度或负载,影响与变压器寿命估计相关的不确定性。这些可变的运行机制影响着电力变压器的运行和寿命规划。为此,本文提出了一种新的概率健康状态估计框架,将概率预测模型与基于蒙特卡罗的贝叶斯滤波方法相结合,以改善智能电网中电力变压器的寿命管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic Power Transformer Condition Monitoring in Smart Grids
Power transformers are critical assets for the correct and reliable operation of the power grid. However, the use of power transformers in the context of smart grids creates new challenges for efficient lifetime management and maintenance planning. The use of intermittent sources of energy and dynamic loads increases the sources of uncertainty and causes non-linear operation dynamics. In addition, the increased use of probabilistic forecasting models for the estimation of influential parameters such as temperature or load, influences the uncertainty associated with the transformer lifetime estimation. These variable operation mechanisms influence the operation and lifetime planning of power transformers. Accordingly, this paper presents a novel probabilistic health state estimation framework to improve the lifetime management of power transformers operated in smart grids through the integration of probabilistic forecasting models with Monte Carlo based Bayesian filtering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvements on Thermal Performance of Power Transformers: Modelling and Testing Using the FDS Technique in Transformer Factory Drying Optimum Shielding Design for Losses and Noise Reduction in Power Transformers CFD Based Sensitivity Study of Cooling Performance of Transformer Radiators Case Study - Calculation of DGA Limit Values and Sampling Interval in Power Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1