Kiminobu Hojo, Steven X. Xu
{"title":"Revision to Stress Intensity Factor Equations for ASME Section XI Appendix C-4000: Determination of Failure Mode","authors":"Kiminobu Hojo, Steven X. Xu","doi":"10.1115/PVP2018-85051","DOIUrl":null,"url":null,"abstract":"In ASME Section XI Appendix C for analytical evaluation of flaws in piping, a screening procedure is prescribed to determine the failure mode and analysis method for the flawed pipe. The end-of-evaluation period flaw dimensions, temperature, material properties, and pipe loadings are considered in the screening procedure. Equations necessary to calculate components of the screening criteria (SC) include stress intensity factor (K) equations. The K-equation for a pipe with a circumferential inside surface flaw in the 2017 Edition Section XI Appendix C-4000 is for a fan-shaped flaw. Real surface flaws are closer to semi-elliptical shape. As part of Section XI Working Group on Pipe Flaw Evaluation (WGPFE) activities, revision to stress intensity factor equations for circumferential surface flaws in Appendix C-4000 has been proposed. The proposed equations include closed-form equations for stress intensity influence coefficients G0 for membrane stress and Ggb for global bending stress for circumferential inside surface flaws. The rationale for the Code changes and technical basis for the proposed stress intensity factor equations are provided in this paper.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-85051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在筛选过程中考虑了评估期结束时的缺陷尺寸、温度、材料特性和管道载荷。计算筛分准则(SC)分量所需的方程包括应力强度因子(K)方程。真正的表面缺陷更接近于半椭圆形。所提出的方程包括封闭形式的应力强度影响系数G0(膜应力)和Ggb(环向内表面缺陷的整体弯曲应力)。本文提供了规范变更的基本原理和提出的应力强度因子方程的技术基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revision to Stress Intensity Factor Equations for ASME Section XI Appendix C-4000: Determination of Failure Mode
In ASME Section XI Appendix C for analytical evaluation of flaws in piping, a screening procedure is prescribed to determine the failure mode and analysis method for the flawed pipe. The end-of-evaluation period flaw dimensions, temperature, material properties, and pipe loadings are considered in the screening procedure. Equations necessary to calculate components of the screening criteria (SC) include stress intensity factor (K) equations. The K-equation for a pipe with a circumferential inside surface flaw in the 2017 Edition Section XI Appendix C-4000 is for a fan-shaped flaw. Real surface flaws are closer to semi-elliptical shape. As part of Section XI Working Group on Pipe Flaw Evaluation (WGPFE) activities, revision to stress intensity factor equations for circumferential surface flaws in Appendix C-4000 has been proposed. The proposed equations include closed-form equations for stress intensity influence coefficients G0 for membrane stress and Ggb for global bending stress for circumferential inside surface flaws. The rationale for the Code changes and technical basis for the proposed stress intensity factor equations are provided in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of Target Flaw Sizes of CASS Pipe for PD Approval Using PFM Code Preface Effect of Pre-Heat Treatment on Hydrogen Concentration Behavior of y-Grooved Weld Joint Based on a Coupled Analysis of Heat Transfer-Thermal Stress-Hydrogen Diffusion Hydrogen Diffusion Concentration Behaviors for Square Groove Weld Joint Cyclic, Monotonic and Fatigue Performance of Stabilized Stainless Steel in PWR Water and Research Laboratory Interlaboratory Study for Small Punch Testing Preliminary Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1