音频特征提取的混合独立分量分析和粗糙集方法

Xin He, Ling Guo, Jianyu Wang, Xianzhong Zhou
{"title":"音频特征提取的混合独立分量分析和粗糙集方法","authors":"Xin He, Ling Guo, Jianyu Wang, Xianzhong Zhou","doi":"10.1109/CCPR.2008.86","DOIUrl":null,"url":null,"abstract":"Audio classification is based on audio features. The choice of audio features can reflect important audio classification features in time and frequency time. The extraction and analysis of audio features are the base and important of audio classification. The most important problem is to extract audio features effectively and make them mutual independence to reduce information redundancy. In this paper, combined with independent component analysis and rough set, a method for audio feature extraction is presented and it's proved better performance by experiments.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Independent Component Analysis and Rough Set Approach for Audio Feature Extraction\",\"authors\":\"Xin He, Ling Guo, Jianyu Wang, Xianzhong Zhou\",\"doi\":\"10.1109/CCPR.2008.86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio classification is based on audio features. The choice of audio features can reflect important audio classification features in time and frequency time. The extraction and analysis of audio features are the base and important of audio classification. The most important problem is to extract audio features effectively and make them mutual independence to reduce information redundancy. In this paper, combined with independent component analysis and rough set, a method for audio feature extraction is presented and it's proved better performance by experiments.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音频分类基于音频特征。音频特征的选择可以在时间和频率时间上反映重要的音频分类特征。音频特征的提取和分析是音频分类的基础和重要内容。最重要的问题是如何有效地提取音频特征,并使它们相互独立,以减少信息冗余。本文将独立分量分析和粗糙集相结合,提出了一种音频特征提取方法,并通过实验证明了该方法具有较好的提取效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Independent Component Analysis and Rough Set Approach for Audio Feature Extraction
Audio classification is based on audio features. The choice of audio features can reflect important audio classification features in time and frequency time. The extraction and analysis of audio features are the base and important of audio classification. The most important problem is to extract audio features effectively and make them mutual independence to reduce information redundancy. In this paper, combined with independent component analysis and rough set, a method for audio feature extraction is presented and it's proved better performance by experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Gait Recognition Method Based on Standard Deviation Energy Image A New Method for Facial Beauty Assessment Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR Study on Highlights Detection in Soccer Video Based on the Location of Slow Motion Replay and Goal Net Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1