{"title":"应用于嵌入式系统的数据驱动方法的时空效率分析","authors":"Iron Tessaro, R. Z. Freire, V. Mariani, L. Coelho","doi":"10.1109/SSCI50451.2021.9660133","DOIUrl":null,"url":null,"abstract":"One of the applications of data-driven methods in the industry is the creation of real-time, embedded measurements, whether to monitor or replace sensor signals. As the number of embedded systems in products raises over time, the energy efficiency of such systems must be considered in the design. The time (processor) efficiency of the embedded software is directly related to the energy efficiency of the embedded system. Therefore, when considering some embedded software solutions, such as data-driven methods, time efficiency must be taken into account to improve energy efficiency. In this work, the energy efficiency of three data-driven methods: the Sparse Identification of Nonlinear Dynamics (SINDy), the Extreme Learning Machine (ELM), and the Random-Vector Functional Link (RVFL) network were assessed by using the creation of a real-time in-cylinder pressure sensor for diesel engines as a task. The three methods were kept with equivalent performances, whereas their relative execution time was tested and classified by their statistical rankings. Additionally, the space (memory) efficiency of the methods was assessed. The contribution of this work is to provide a guide to choose the best data-driven method to be used in an embedded system in terms of efficiency.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space and Time Efficiency Analysis of Data-Driven Methods Applied to Embedded Systems\",\"authors\":\"Iron Tessaro, R. Z. Freire, V. Mariani, L. Coelho\",\"doi\":\"10.1109/SSCI50451.2021.9660133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the applications of data-driven methods in the industry is the creation of real-time, embedded measurements, whether to monitor or replace sensor signals. As the number of embedded systems in products raises over time, the energy efficiency of such systems must be considered in the design. The time (processor) efficiency of the embedded software is directly related to the energy efficiency of the embedded system. Therefore, when considering some embedded software solutions, such as data-driven methods, time efficiency must be taken into account to improve energy efficiency. In this work, the energy efficiency of three data-driven methods: the Sparse Identification of Nonlinear Dynamics (SINDy), the Extreme Learning Machine (ELM), and the Random-Vector Functional Link (RVFL) network were assessed by using the creation of a real-time in-cylinder pressure sensor for diesel engines as a task. The three methods were kept with equivalent performances, whereas their relative execution time was tested and classified by their statistical rankings. Additionally, the space (memory) efficiency of the methods was assessed. The contribution of this work is to provide a guide to choose the best data-driven method to be used in an embedded system in terms of efficiency.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Space and Time Efficiency Analysis of Data-Driven Methods Applied to Embedded Systems
One of the applications of data-driven methods in the industry is the creation of real-time, embedded measurements, whether to monitor or replace sensor signals. As the number of embedded systems in products raises over time, the energy efficiency of such systems must be considered in the design. The time (processor) efficiency of the embedded software is directly related to the energy efficiency of the embedded system. Therefore, when considering some embedded software solutions, such as data-driven methods, time efficiency must be taken into account to improve energy efficiency. In this work, the energy efficiency of three data-driven methods: the Sparse Identification of Nonlinear Dynamics (SINDy), the Extreme Learning Machine (ELM), and the Random-Vector Functional Link (RVFL) network were assessed by using the creation of a real-time in-cylinder pressure sensor for diesel engines as a task. The three methods were kept with equivalent performances, whereas their relative execution time was tested and classified by their statistical rankings. Additionally, the space (memory) efficiency of the methods was assessed. The contribution of this work is to provide a guide to choose the best data-driven method to be used in an embedded system in terms of efficiency.