Ruifang Wang, R. Veldhuis, D. Ramos, L. Spreeuwers, Julian Fierrez, Hai-yun Xu
{"title":"光谱细节在高分辨率掌纹识别中的应用","authors":"Ruifang Wang, R. Veldhuis, D. Ramos, L. Spreeuwers, Julian Fierrez, Hai-yun Xu","doi":"10.1109/IWBF.2013.6547308","DOIUrl":null,"url":null,"abstract":"The spectral minutiae representation has been proposed as a novel method to minutiae-based fingerprint recognition, which can handle minutiae translation and rotation and improve matching speed. As high-resolution palmprint recognition is also mainly based on minutiae sets, we apply spectral minutiae representation to palmprints and implement spectral minutiae based matching. We optimize key parameters for the method by experimental study on the characteristics of spectral minutiae using both fingerprints and palmprints. However, experimental results show that spectral minutiae representation has much worse performance for palmprints than that for fingerprints. EER 15.89% and 14.2% are achieved on the public high-resolution palmprint database THUPALMLAB using location-based spectral minutiae representation (SML) and the complex spectral minutiae representation (SMC) respectively while 5.1% and 3.05% on FVC2002 DB2A fingerprint database. Based on statistical analysis, we find the worse performance for palmprints mainly due to larger non-linear distortion and much larger number of minutiae.","PeriodicalId":412596,"journal":{"name":"2013 International Workshop on Biometrics and Forensics (IWBF)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the use of spectral minutiae in high-resolution palmprint recognition\",\"authors\":\"Ruifang Wang, R. Veldhuis, D. Ramos, L. Spreeuwers, Julian Fierrez, Hai-yun Xu\",\"doi\":\"10.1109/IWBF.2013.6547308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spectral minutiae representation has been proposed as a novel method to minutiae-based fingerprint recognition, which can handle minutiae translation and rotation and improve matching speed. As high-resolution palmprint recognition is also mainly based on minutiae sets, we apply spectral minutiae representation to palmprints and implement spectral minutiae based matching. We optimize key parameters for the method by experimental study on the characteristics of spectral minutiae using both fingerprints and palmprints. However, experimental results show that spectral minutiae representation has much worse performance for palmprints than that for fingerprints. EER 15.89% and 14.2% are achieved on the public high-resolution palmprint database THUPALMLAB using location-based spectral minutiae representation (SML) and the complex spectral minutiae representation (SMC) respectively while 5.1% and 3.05% on FVC2002 DB2A fingerprint database. Based on statistical analysis, we find the worse performance for palmprints mainly due to larger non-linear distortion and much larger number of minutiae.\",\"PeriodicalId\":412596,\"journal\":{\"name\":\"2013 International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF.2013.6547308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2013.6547308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the use of spectral minutiae in high-resolution palmprint recognition
The spectral minutiae representation has been proposed as a novel method to minutiae-based fingerprint recognition, which can handle minutiae translation and rotation and improve matching speed. As high-resolution palmprint recognition is also mainly based on minutiae sets, we apply spectral minutiae representation to palmprints and implement spectral minutiae based matching. We optimize key parameters for the method by experimental study on the characteristics of spectral minutiae using both fingerprints and palmprints. However, experimental results show that spectral minutiae representation has much worse performance for palmprints than that for fingerprints. EER 15.89% and 14.2% are achieved on the public high-resolution palmprint database THUPALMLAB using location-based spectral minutiae representation (SML) and the complex spectral minutiae representation (SMC) respectively while 5.1% and 3.05% on FVC2002 DB2A fingerprint database. Based on statistical analysis, we find the worse performance for palmprints mainly due to larger non-linear distortion and much larger number of minutiae.