3-RRR平面并联机器人的主动力控制

A. Noshadi, M. Mailah, A. Zolfagharian
{"title":"3-RRR平面并联机器人的主动力控制","authors":"A. Noshadi, M. Mailah, A. Zolfagharian","doi":"10.1109/ICMET.2010.5598495","DOIUrl":null,"url":null,"abstract":"This paper presents a new and novel method to control a 3-RRR (revolute-revolute-revolute) planar parallel manipulator using an active force control (AFC) strategy. A traditional proportional-integral-derivative (PID) controller was first designed and developed to demonstrate the basic and stable response of the manipulator in performing trajectory tracking tasks. Later, the AFC section was incorporated into the control scheme in cascade form by adding it in series with the PID controller (PID+AFC), its primary aim of which is to improve the overall system dynamic performance particularly when the manipulator is subjected to different loading conditions. Results clearly illustrate the robustness and effectiveness of the proposed AFC-based scheme in rejecting the disturbances compared to the traditional PID controller.","PeriodicalId":415118,"journal":{"name":"2010 International Conference on Mechanical and Electrical Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Active force control of 3-RRR planar parallel manipulator\",\"authors\":\"A. Noshadi, M. Mailah, A. Zolfagharian\",\"doi\":\"10.1109/ICMET.2010.5598495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new and novel method to control a 3-RRR (revolute-revolute-revolute) planar parallel manipulator using an active force control (AFC) strategy. A traditional proportional-integral-derivative (PID) controller was first designed and developed to demonstrate the basic and stable response of the manipulator in performing trajectory tracking tasks. Later, the AFC section was incorporated into the control scheme in cascade form by adding it in series with the PID controller (PID+AFC), its primary aim of which is to improve the overall system dynamic performance particularly when the manipulator is subjected to different loading conditions. Results clearly illustrate the robustness and effectiveness of the proposed AFC-based scheme in rejecting the disturbances compared to the traditional PID controller.\",\"PeriodicalId\":415118,\"journal\":{\"name\":\"2010 International Conference on Mechanical and Electrical Technology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Mechanical and Electrical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMET.2010.5598495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Mechanical and Electrical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMET.2010.5598495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

提出了一种利用主动力控制策略控制3-RRR (revolution - revolution - revolte - revolte)平面并联机构的新方法。首先设计并开发了传统的比例-积分-导数(PID)控制器,以演示机械臂在执行轨迹跟踪任务时的基本稳定响应。随后,将AFC部分与PID控制器(PID+AFC)串联,以串级的形式加入到控制方案中,其主要目的是提高系统整体的动态性能,特别是当机械臂受到不同的加载条件时。结果清楚地表明,与传统的PID控制器相比,所提出的基于afc的方案在抑制干扰方面具有鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active force control of 3-RRR planar parallel manipulator
This paper presents a new and novel method to control a 3-RRR (revolute-revolute-revolute) planar parallel manipulator using an active force control (AFC) strategy. A traditional proportional-integral-derivative (PID) controller was first designed and developed to demonstrate the basic and stable response of the manipulator in performing trajectory tracking tasks. Later, the AFC section was incorporated into the control scheme in cascade form by adding it in series with the PID controller (PID+AFC), its primary aim of which is to improve the overall system dynamic performance particularly when the manipulator is subjected to different loading conditions. Results clearly illustrate the robustness and effectiveness of the proposed AFC-based scheme in rejecting the disturbances compared to the traditional PID controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Title pages Experimental analysis of the dynamic performance of PEM fuel cell under various load changes Strong cache consistency in integration systems Design and simulation of double lumen polymeric microneedles for blood transport Inertial system used to analyze normal and pathological human gait
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1