无线传感器网络中节点定位的混合多目标进化算法M-SPOT

Alfredo J. Perez
{"title":"无线传感器网络中节点定位的混合多目标进化算法M-SPOT","authors":"Alfredo J. Perez","doi":"10.1109/WAINA.2018.00096","DOIUrl":null,"url":null,"abstract":"We address the problem of the placement of static sensors and relays to monitor specific locations in an area assuming a single-tiered wireless sensor network model with limited communication and sensing constraints. We present a multiobjective optimization model with two conflicting objectives: total number of devices used in the placement and total energy dissipated by the placement. To optimize the model, we propose the Multiobjective Sensor Placement Optimizer (M-SPOT) algorithm, which is a hybrid evolutionary algorithm that combines the Non-Sorting Genetic Algorithm 2 (NSGA2) algorithm with local search heuristics. We evaluate the performance of M-SPOT by simulating the placement of sensors and relays. We found that the utilization of local search heuristics greatly contribute to find better placements when compared to the NSGA2 algorithm.","PeriodicalId":296466,"journal":{"name":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"M-SPOT: A Hybrid Multiobjective Evolutionary Algorithm for Node Placement in Wireless Sensor Networks\",\"authors\":\"Alfredo J. Perez\",\"doi\":\"10.1109/WAINA.2018.00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of the placement of static sensors and relays to monitor specific locations in an area assuming a single-tiered wireless sensor network model with limited communication and sensing constraints. We present a multiobjective optimization model with two conflicting objectives: total number of devices used in the placement and total energy dissipated by the placement. To optimize the model, we propose the Multiobjective Sensor Placement Optimizer (M-SPOT) algorithm, which is a hybrid evolutionary algorithm that combines the Non-Sorting Genetic Algorithm 2 (NSGA2) algorithm with local search heuristics. We evaluate the performance of M-SPOT by simulating the placement of sensors and relays. We found that the utilization of local search heuristics greatly contribute to find better placements when compared to the NSGA2 algorithm.\",\"PeriodicalId\":296466,\"journal\":{\"name\":\"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2018.00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2018.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们解决了静态传感器和继电器的放置问题,以监测区域内的特定位置,假设具有有限通信和传感约束的单层无线传感器网络模型。我们提出了一个多目标优化模型,该模型具有两个相互冲突的目标:放置中使用的设备总数和放置所消耗的总能量。为了优化模型,我们提出了多目标传感器放置优化器(M-SPOT)算法,这是一种将非排序遗传算法2 (NSGA2)算法与局部搜索启发式算法相结合的混合进化算法。我们通过模拟传感器和继电器的放置来评估M-SPOT的性能。我们发现,与NSGA2算法相比,局部搜索启发式的使用极大地有助于找到更好的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
M-SPOT: A Hybrid Multiobjective Evolutionary Algorithm for Node Placement in Wireless Sensor Networks
We address the problem of the placement of static sensors and relays to monitor specific locations in an area assuming a single-tiered wireless sensor network model with limited communication and sensing constraints. We present a multiobjective optimization model with two conflicting objectives: total number of devices used in the placement and total energy dissipated by the placement. To optimize the model, we propose the Multiobjective Sensor Placement Optimizer (M-SPOT) algorithm, which is a hybrid evolutionary algorithm that combines the Non-Sorting Genetic Algorithm 2 (NSGA2) algorithm with local search heuristics. We evaluate the performance of M-SPOT by simulating the placement of sensors and relays. We found that the utilization of local search heuristics greatly contribute to find better placements when compared to the NSGA2 algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-agent Based Simulations of Block-Free Distributed Ledgers Mobility Management Architecture in Different RATs Based Network Slicing Apply Scikit-Learn in Python to Analyze Driver Behavior Based on OBD Data Proposal of Static Body Object Detection Methods with the DTN Routing for Life Safety Information Systems Resource Allocation Scheme in 5G Network Slices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1