基于卷积神经网络和红外层析成像的激光-粉末床融合现场过程监测

Hamed Elwarfalli, Dimitri Papazoglou, D. Erdahl, Amy Doll, J. Speltz
{"title":"基于卷积神经网络和红外层析成像的激光-粉末床融合现场过程监测","authors":"Hamed Elwarfalli, Dimitri Papazoglou, D. Erdahl, Amy Doll, J. Speltz","doi":"10.1109/NAECON46414.2019.9058251","DOIUrl":null,"url":null,"abstract":"Additive Manufacturing (AM) is a growing field for various industries of avionics, biomedical, automotive and manufacturing. The onset of Laser Powder Bed Fusion (LPBF) technologies for metal printing has shown exceptional growth in the past 15 years. Quality of parts for LPBF is a concern for the industry, as many parts produced are high risk, such as biomedical implants. To address these needs, a LPBF machine was designed with in-situ sensors to monitor the build process. Image processing and machine learning algorithms provide an efficient means to take bulk data and assess part quality, validating specific internal geometries and build defects. This research will analyze infrared (IR) images from a Selective Laser Melting (SLM) machine using a Computer Aided Design (CAD) designed part, featuring specific geometries (squares, circles, and triangles) of varying sizes (0.75–3.5 mm) on multiple layers for feature detection. Applying image processing to denoise, then Principal Component Analysis (PCA) for further denoising and applying Convolution Neural Networks (CNN) to identify the features and identifying a class which does not belong to a dataset, where a dataset are created from CAD images. Through this automated process, 300 geometric elements detected, classified, and validated against the build file through CNN. In addition, several build anomalies were detected and saved for end-user inspection.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"323 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"In Situ Process Monitoring for Laser-Powder Bed Fusion using Convolutional Neural Networks and Infrared Tomography\",\"authors\":\"Hamed Elwarfalli, Dimitri Papazoglou, D. Erdahl, Amy Doll, J. Speltz\",\"doi\":\"10.1109/NAECON46414.2019.9058251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive Manufacturing (AM) is a growing field for various industries of avionics, biomedical, automotive and manufacturing. The onset of Laser Powder Bed Fusion (LPBF) technologies for metal printing has shown exceptional growth in the past 15 years. Quality of parts for LPBF is a concern for the industry, as many parts produced are high risk, such as biomedical implants. To address these needs, a LPBF machine was designed with in-situ sensors to monitor the build process. Image processing and machine learning algorithms provide an efficient means to take bulk data and assess part quality, validating specific internal geometries and build defects. This research will analyze infrared (IR) images from a Selective Laser Melting (SLM) machine using a Computer Aided Design (CAD) designed part, featuring specific geometries (squares, circles, and triangles) of varying sizes (0.75–3.5 mm) on multiple layers for feature detection. Applying image processing to denoise, then Principal Component Analysis (PCA) for further denoising and applying Convolution Neural Networks (CNN) to identify the features and identifying a class which does not belong to a dataset, where a dataset are created from CAD images. Through this automated process, 300 geometric elements detected, classified, and validated against the build file through CNN. In addition, several build anomalies were detected and saved for end-user inspection.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"323 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9058251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

增材制造(AM)是航空电子、生物医学、汽车和制造业等各个行业的一个新兴领域。激光粉末床熔融(LPBF)技术在过去的15年里出现了惊人的增长。LPBF的零件质量是业界关注的问题,因为生产的许多零件都是高风险的,例如生物医学植入物。为了满足这些需求,设计了一台带有原位传感器的LPBF机器来监控构建过程。图像处理和机器学习算法提供了一种有效的方法来获取大量数据并评估零件质量,验证特定的内部几何形状和构建缺陷。本研究将使用计算机辅助设计(CAD)设计的部件分析来自选择性激光熔化(SLM)机器的红外(IR)图像,这些图像具有不同尺寸(0.75-3.5 mm)的特定几何形状(正方形,圆形和三角形),用于多层特征检测。应用图像处理去噪,然后主成分分析(PCA)进一步去噪,并应用卷积神经网络(CNN)识别特征和识别不属于数据集的类,其中数据集是由CAD图像创建的。通过这个自动化的过程,300个几何元素通过CNN检测、分类和验证构建文件。此外,还检测到几个构建异常,并将其保存以供最终用户检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Situ Process Monitoring for Laser-Powder Bed Fusion using Convolutional Neural Networks and Infrared Tomography
Additive Manufacturing (AM) is a growing field for various industries of avionics, biomedical, automotive and manufacturing. The onset of Laser Powder Bed Fusion (LPBF) technologies for metal printing has shown exceptional growth in the past 15 years. Quality of parts for LPBF is a concern for the industry, as many parts produced are high risk, such as biomedical implants. To address these needs, a LPBF machine was designed with in-situ sensors to monitor the build process. Image processing and machine learning algorithms provide an efficient means to take bulk data and assess part quality, validating specific internal geometries and build defects. This research will analyze infrared (IR) images from a Selective Laser Melting (SLM) machine using a Computer Aided Design (CAD) designed part, featuring specific geometries (squares, circles, and triangles) of varying sizes (0.75–3.5 mm) on multiple layers for feature detection. Applying image processing to denoise, then Principal Component Analysis (PCA) for further denoising and applying Convolution Neural Networks (CNN) to identify the features and identifying a class which does not belong to a dataset, where a dataset are created from CAD images. Through this automated process, 300 geometric elements detected, classified, and validated against the build file through CNN. In addition, several build anomalies were detected and saved for end-user inspection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical Cyber-Security of SCADA Systems Cluster-Based Hungarian Approach to Task Allocation for Unmanned Aerial Vehicles Privacy Preserving Medium Access Control Protocol for wireless Body Area Sensor Networks Gaussian Beam Propagation Through Turbulent Atmosphere using Second-Order Split-Step Algorithm A generalized equivalent circuit model for large-scale battery packs with cell-to-cell variation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1