在65nm CMOS中采用位交错方案的1kb 9T亚阈值SRAM

Ming-Hung Chang, Y. Chiu, Shu-Lin Lai, W. Hwang
{"title":"在65nm CMOS中采用位交错方案的1kb 9T亚阈值SRAM","authors":"Ming-Hung Chang, Y. Chiu, Shu-Lin Lai, W. Hwang","doi":"10.1109/ISLPED.2011.5993652","DOIUrl":null,"url":null,"abstract":"Subthreshold SRAM is a significant approach to reduce power consumption in energy-constrained SoC design. For the ultra-low power consideration, the primary concerns of SRAM are stability and reliability instead of performance. In this paper, the proposed 9T bit-cell enhances write ability by cutting off the positive feedback loop of inverter pair. In the read mode, the isolated read path and storage node enlarge the read SNM. Besides, a 9T subthreshold SRAM is proposed to enable implementation of bit-interleaving structure which achieves soft-error tolerance. The proposed SRAM is able to operate at a voltage as low as 0.3V. One extra virtual ground (VVSS) line is used to reduce the bit-line leakage to ensure the data can be read successfully. A 1kb bit-interleaved 9T SRAM is implemented in UMC 65nm 1P10M CMOS technology to verify the proposed scheme, which operates at the minimum energy point (0.3V) with 5.824pJ energy consumption for one write and one read operation.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A 1kb 9T subthreshold SRAM with bit-interleaving scheme in 65nm CMOS\",\"authors\":\"Ming-Hung Chang, Y. Chiu, Shu-Lin Lai, W. Hwang\",\"doi\":\"10.1109/ISLPED.2011.5993652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subthreshold SRAM is a significant approach to reduce power consumption in energy-constrained SoC design. For the ultra-low power consideration, the primary concerns of SRAM are stability and reliability instead of performance. In this paper, the proposed 9T bit-cell enhances write ability by cutting off the positive feedback loop of inverter pair. In the read mode, the isolated read path and storage node enlarge the read SNM. Besides, a 9T subthreshold SRAM is proposed to enable implementation of bit-interleaving structure which achieves soft-error tolerance. The proposed SRAM is able to operate at a voltage as low as 0.3V. One extra virtual ground (VVSS) line is used to reduce the bit-line leakage to ensure the data can be read successfully. A 1kb bit-interleaved 9T SRAM is implemented in UMC 65nm 1P10M CMOS technology to verify the proposed scheme, which operates at the minimum energy point (0.3V) with 5.824pJ energy consumption for one write and one read operation.\",\"PeriodicalId\":117694,\"journal\":{\"name\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2011.5993652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

在能量受限的SoC设计中,亚阈值SRAM是降低功耗的重要方法。对于超低功耗的考虑,SRAM的主要关注点是稳定性和可靠性,而不是性能。本文提出的9T位单元通过切断逆变器对的正反馈回路来提高写入能力。在读模式下,被隔离的读路径和存储节点扩大了读SNM。此外,提出了一种9T亚阈值SRAM,实现了位交错结构,实现了软容错。所提出的SRAM能够在低至0.3V的电压下工作。额外的一根虚拟地(VVSS)线用于减少位线泄漏,以确保数据可以成功读取。采用UMC 65nm 1P10M CMOS技术实现1kb位交错9T SRAM以验证所提出的方案,该方案在最小能量点(0.3V)下工作,一次写入和一次读取操作能耗为5.824pJ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 1kb 9T subthreshold SRAM with bit-interleaving scheme in 65nm CMOS
Subthreshold SRAM is a significant approach to reduce power consumption in energy-constrained SoC design. For the ultra-low power consideration, the primary concerns of SRAM are stability and reliability instead of performance. In this paper, the proposed 9T bit-cell enhances write ability by cutting off the positive feedback loop of inverter pair. In the read mode, the isolated read path and storage node enlarge the read SNM. Besides, a 9T subthreshold SRAM is proposed to enable implementation of bit-interleaving structure which achieves soft-error tolerance. The proposed SRAM is able to operate at a voltage as low as 0.3V. One extra virtual ground (VVSS) line is used to reduce the bit-line leakage to ensure the data can be read successfully. A 1kb bit-interleaved 9T SRAM is implemented in UMC 65nm 1P10M CMOS technology to verify the proposed scheme, which operates at the minimum energy point (0.3V) with 5.824pJ energy consumption for one write and one read operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Processor caches built using multi-level spin-transfer torque RAM cells Object-based local dimming for LCD systems with LED BLUs Near-/sub-threshold DLL-based clock generator with PVT-aware locking range compensation Learning to manage combined energy supply systems An energy-efficient adaptive hybrid cache
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1