Nezha Chater, Nissrine Mhaiti, M. Radouani, B. E. Fahime
{"title":"含压电作动器的车辆动力学建模","authors":"Nezha Chater, Nissrine Mhaiti, M. Radouani, B. E. Fahime","doi":"10.1109/CiSt49399.2021.9357265","DOIUrl":null,"url":null,"abstract":"Recently, most research has focused on energy recovery and storage. One of the materials allowing the recovery of dissipated energy is the piezoelectric material. Piezoelectric (PE) materials are functional materials, which fulfill this role in both directions, transforming electrical energy into mechanical and vice versa. In this paper, we are interested in recovering the vibratory energy, otherwise dissipated via conventional shock absorbers, in suspension systems by using piezoelectric materials and reuse it. We propose a physical model integrating a piezoelectric actuator in the vehicle suspension system. This energy is used for the operation of accessories (windows, mirrors …). The idea is to integrate renewable energy sources to optimize the performance of the vehicle. We proposed a multi-physic model of the system under a software used to this type of modeling (LMS.AMESim). The simulation results of the system and its various sub-systems are presented for studying the piezo-actuator response in order to reduce consumption and increase energy performance in a vehicle.","PeriodicalId":253233,"journal":{"name":"2020 6th IEEE Congress on Information Science and Technology (CiSt)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics modeling of a vehicle including piezoelectric actuator\",\"authors\":\"Nezha Chater, Nissrine Mhaiti, M. Radouani, B. E. Fahime\",\"doi\":\"10.1109/CiSt49399.2021.9357265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, most research has focused on energy recovery and storage. One of the materials allowing the recovery of dissipated energy is the piezoelectric material. Piezoelectric (PE) materials are functional materials, which fulfill this role in both directions, transforming electrical energy into mechanical and vice versa. In this paper, we are interested in recovering the vibratory energy, otherwise dissipated via conventional shock absorbers, in suspension systems by using piezoelectric materials and reuse it. We propose a physical model integrating a piezoelectric actuator in the vehicle suspension system. This energy is used for the operation of accessories (windows, mirrors …). The idea is to integrate renewable energy sources to optimize the performance of the vehicle. We proposed a multi-physic model of the system under a software used to this type of modeling (LMS.AMESim). The simulation results of the system and its various sub-systems are presented for studying the piezo-actuator response in order to reduce consumption and increase energy performance in a vehicle.\",\"PeriodicalId\":253233,\"journal\":{\"name\":\"2020 6th IEEE Congress on Information Science and Technology (CiSt)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th IEEE Congress on Information Science and Technology (CiSt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CiSt49399.2021.9357265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th IEEE Congress on Information Science and Technology (CiSt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CiSt49399.2021.9357265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamics modeling of a vehicle including piezoelectric actuator
Recently, most research has focused on energy recovery and storage. One of the materials allowing the recovery of dissipated energy is the piezoelectric material. Piezoelectric (PE) materials are functional materials, which fulfill this role in both directions, transforming electrical energy into mechanical and vice versa. In this paper, we are interested in recovering the vibratory energy, otherwise dissipated via conventional shock absorbers, in suspension systems by using piezoelectric materials and reuse it. We propose a physical model integrating a piezoelectric actuator in the vehicle suspension system. This energy is used for the operation of accessories (windows, mirrors …). The idea is to integrate renewable energy sources to optimize the performance of the vehicle. We proposed a multi-physic model of the system under a software used to this type of modeling (LMS.AMESim). The simulation results of the system and its various sub-systems are presented for studying the piezo-actuator response in order to reduce consumption and increase energy performance in a vehicle.