基于多项式主成分分析的非线性降维

A. Kazemipour, S. Druckmann
{"title":"基于多项式主成分分析的非线性降维","authors":"A. Kazemipour, S. Druckmann","doi":"10.1109/GlobalSIP.2018.8646515","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Dimensionality Reduction Via Polynomial Principal Component Analysis\",\"authors\":\"A. Kazemipour, S. Druckmann\",\"doi\":\"10.1109/GlobalSIP.2018.8646515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种非线性降维技术Poly-PCA,它可以捕获高维动态数据中的任意非线性。Poly-PCA不是在高维数据的非线性函数空间上进行优化,而是将数据作为潜在变量中的非线性函数建模,从而实现相对快速的优化。Poly-PCA可以处理不保留电位拓扑和几何形状的非线性。将多元主成分分析应用于非线性动力系统,成功地恢复了潜在变量的相空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Dimensionality Reduction Via Polynomial Principal Component Analysis
In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1