{"title":"基于多项式主成分分析的非线性降维","authors":"A. Kazemipour, S. Druckmann","doi":"10.1109/GlobalSIP.2018.8646515","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Dimensionality Reduction Via Polynomial Principal Component Analysis\",\"authors\":\"A. Kazemipour, S. Druckmann\",\"doi\":\"10.1109/GlobalSIP.2018.8646515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Dimensionality Reduction Via Polynomial Principal Component Analysis
In this paper, we introduce Poly-PCA, a nonlinear dimensionality reduction technique which can capture arbitrary nonlinearities in high-dimensional and dynamic data. Instead of optimizing over the space of nonlinear functions of high-dimensional data Poly-PCA models the data as nonlinear functions in the latent variables, leading to relatively fast optimization. Poly-PCA can handle nonlinearities which do not preserve the topology and geometry of the latents. Applying Poly-PCA to a nonlinear dynamical system successfully recovered the phase-space of the latent variables.