图像去模糊的最新进展

Seungyong Lee, Sunghyun Cho
{"title":"图像去模糊的最新进展","authors":"Seungyong Lee, Sunghyun Cho","doi":"10.1145/2542266.2542272","DOIUrl":null,"url":null,"abstract":"Motion blur is a common artifact that produces disappointing blurry images with inevitable information loss. Due to the nature of imaging sensors that accumulates incoming lights, a motion blurred image will be obtained if the camera sensor moves during exposure. Image (motion) de-blurring is a computational process to remove motion blurs from a blurred image to obtain a sharp latent image. Recently image de-blurring has become a popular topic in computer graphics and vision research, and excellent methods have been developed to improve the quality of de-blurred images and accelerate the computation speed. Image de-blurring has also a variety of applications in image enhancement software and camera industry, and a practical image de-blurring method with quality and speed would be a critical factor to improve the performance of image enhancement and camera systems.\n This course will first introduce the concepts, theoretical model, problem definition, and basic approach of image de-blurring. Blind deconvolution and non-blind deconvolution are two main topics of image de-blurring, which are classified by the existence of given kernel (or PSF; point spread function) information that describes the camera motion. For both blind deconvolution and non-blind deconvolution, challenges, classical methods, and recent research trends and successful methods will be presented. A PhotoShop demo will be given to show the performance of a recently developed fast motion de-blurring method.\n This course will also cover several advanced issues of image de-blurring, such as hardware based approaches, spatially-varying camera shakes, object motions, and video de-blurring. It will conclude with remaining challenges, such as outliers and noise, computation time, and quality assessment. There will be Q&A at the end of each presentation with a short discussion at the end of the course.","PeriodicalId":126796,"journal":{"name":"International Conference on Societal Automation","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Recent advances in image deblurring\",\"authors\":\"Seungyong Lee, Sunghyun Cho\",\"doi\":\"10.1145/2542266.2542272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion blur is a common artifact that produces disappointing blurry images with inevitable information loss. Due to the nature of imaging sensors that accumulates incoming lights, a motion blurred image will be obtained if the camera sensor moves during exposure. Image (motion) de-blurring is a computational process to remove motion blurs from a blurred image to obtain a sharp latent image. Recently image de-blurring has become a popular topic in computer graphics and vision research, and excellent methods have been developed to improve the quality of de-blurred images and accelerate the computation speed. Image de-blurring has also a variety of applications in image enhancement software and camera industry, and a practical image de-blurring method with quality and speed would be a critical factor to improve the performance of image enhancement and camera systems.\\n This course will first introduce the concepts, theoretical model, problem definition, and basic approach of image de-blurring. Blind deconvolution and non-blind deconvolution are two main topics of image de-blurring, which are classified by the existence of given kernel (or PSF; point spread function) information that describes the camera motion. For both blind deconvolution and non-blind deconvolution, challenges, classical methods, and recent research trends and successful methods will be presented. A PhotoShop demo will be given to show the performance of a recently developed fast motion de-blurring method.\\n This course will also cover several advanced issues of image de-blurring, such as hardware based approaches, spatially-varying camera shakes, object motions, and video de-blurring. It will conclude with remaining challenges, such as outliers and noise, computation time, and quality assessment. There will be Q&A at the end of each presentation with a short discussion at the end of the course.\",\"PeriodicalId\":126796,\"journal\":{\"name\":\"International Conference on Societal Automation\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Societal Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2542266.2542272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Societal Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2542266.2542272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

动态模糊是一种常见的人工制品,它会产生令人失望的模糊图像,同时不可避免地会丢失信息。由于成像传感器的性质是积累入射光,如果相机传感器在曝光过程中移动,则会获得运动模糊图像。图像(运动)去模糊是一种从模糊图像中去除运动模糊以获得清晰潜在图像的计算过程。近年来,图像去模糊已经成为计算机图形学和视觉研究领域的一个热门话题,人们已经开发出了一些很好的方法来提高去模糊图像的质量和加快计算速度。图像去模糊在图像增强软件和相机行业中也有各种各样的应用,一种实用的高质量、高速度的图像去模糊方法将是提高图像增强和相机系统性能的关键因素。本课程将首先介绍图像去模糊的概念、理论模型、问题定义及基本方法。盲反卷积和非盲反卷积是图像去模糊的两个主要问题,它们根据给定核(或PSF)的存在性进行分类;点扩展函数)描述摄像机运动的信息。介绍了盲反卷积和非盲反卷积的挑战、经典方法、最新研究趋势和成功方法。PhotoShop演示将给出一个最近开发的快速运动去模糊方法的性能。本课程还将涵盖图像去模糊的几个高级问题,如基于硬件的方法,空间变化的相机抖动,物体运动和视频去模糊。本文将总结剩余的挑战,如异常值和噪声、计算时间和质量评估。每堂课的最后都会有问答环节,课程结束后会有一个简短的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in image deblurring
Motion blur is a common artifact that produces disappointing blurry images with inevitable information loss. Due to the nature of imaging sensors that accumulates incoming lights, a motion blurred image will be obtained if the camera sensor moves during exposure. Image (motion) de-blurring is a computational process to remove motion blurs from a blurred image to obtain a sharp latent image. Recently image de-blurring has become a popular topic in computer graphics and vision research, and excellent methods have been developed to improve the quality of de-blurred images and accelerate the computation speed. Image de-blurring has also a variety of applications in image enhancement software and camera industry, and a practical image de-blurring method with quality and speed would be a critical factor to improve the performance of image enhancement and camera systems. This course will first introduce the concepts, theoretical model, problem definition, and basic approach of image de-blurring. Blind deconvolution and non-blind deconvolution are two main topics of image de-blurring, which are classified by the existence of given kernel (or PSF; point spread function) information that describes the camera motion. For both blind deconvolution and non-blind deconvolution, challenges, classical methods, and recent research trends and successful methods will be presented. A PhotoShop demo will be given to show the performance of a recently developed fast motion de-blurring method. This course will also cover several advanced issues of image de-blurring, such as hardware based approaches, spatially-varying camera shakes, object motions, and video de-blurring. It will conclude with remaining challenges, such as outliers and noise, computation time, and quality assessment. There will be Q&A at the end of each presentation with a short discussion at the end of the course.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fox tale Under the fold 3D interactive modeling with capturing instruction interface based on area limitation Dji. death fails Hyak-Ki Men: a study of framework for creating mixed reality entertainment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1