脑电的节段性结构比连续的可塑性结构更能揭示脑组织的动态多稳定性

A. Kaplan
{"title":"脑电的节段性结构比连续的可塑性结构更能揭示脑组织的动态多稳定性","authors":"A. Kaplan","doi":"10.1109/ICONIP.1999.845668","DOIUrl":null,"url":null,"abstract":"A critical review of the principal strategies of the EEG description as a piecewise stationary process is given and new methodology of EEG segmentation, based on nonparametric statistical analysis, is proposed. Our methodology provides the detection of moments of quasi-stationary segments' boundaries in almost any EEG characteristic for a given level of false alarm probability. Relatively high temporal resolution of the method makes it possible to formulate a new approach to investigation of the functional synchrony between different brain areas. We discuss also the achievements, problems, and prospects of EEG signal segmentation.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Segmental structure of EEG more likely reveals the dynamic multistability of the brain tissue than the continual plasticity one\",\"authors\":\"A. Kaplan\",\"doi\":\"10.1109/ICONIP.1999.845668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A critical review of the principal strategies of the EEG description as a piecewise stationary process is given and new methodology of EEG segmentation, based on nonparametric statistical analysis, is proposed. Our methodology provides the detection of moments of quasi-stationary segments' boundaries in almost any EEG characteristic for a given level of false alarm probability. Relatively high temporal resolution of the method makes it possible to formulate a new approach to investigation of the functional synchrony between different brain areas. We discuss also the achievements, problems, and prospects of EEG signal segmentation.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.845668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.845668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

对脑电信号描述作为分段平稳过程的主要策略进行了评述,提出了基于非参数统计分析的脑电信号分割新方法。我们的方法提供了准平稳段的边界矩检测在几乎任何EEG特征的给定水平的虚警概率。该方法具有较高的时间分辨率,为研究不同脑区之间的功能同步提供了新的途径。讨论了脑电信号分割的研究成果、存在的问题及展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmental structure of EEG more likely reveals the dynamic multistability of the brain tissue than the continual plasticity one
A critical review of the principal strategies of the EEG description as a piecewise stationary process is given and new methodology of EEG segmentation, based on nonparametric statistical analysis, is proposed. Our methodology provides the detection of moments of quasi-stationary segments' boundaries in almost any EEG characteristic for a given level of false alarm probability. Relatively high temporal resolution of the method makes it possible to formulate a new approach to investigation of the functional synchrony between different brain areas. We discuss also the achievements, problems, and prospects of EEG signal segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1