利用imu和人工神经网络预测地上行走时髋关节和膝关节轨迹特征点

S. Martinez, O. Kuzmicheva, A. Gräser
{"title":"利用imu和人工神经网络预测地上行走时髋关节和膝关节轨迹特征点","authors":"S. Martinez, O. Kuzmicheva, A. Gräser","doi":"10.1109/MeMeA.2016.7533795","DOIUrl":null,"url":null,"abstract":"This paper presents a study on overground non-pathological gait, focusing on hip and knee joint trajectories in sagittal plane. The objects of study are some characteristic points of the joint curves (including the extrema) and their relation to gait parameters, namely normalized walking speed, cadence and normalized step length. The main objective is to predict the spatio-temporal values of these points depending on given gait parameters. To this end, a study with 18 healthy subjects was conducted, where they were asked to walk as comfortable as possible whilst following different tasks, namely walking with desired and given cadence, step length and speed. The data was processed and fed to artificial neural networks to obtain an algorithm able to predict the characteristic points. Specifics of the study protocol and data processing are presented, as well as the prediction results.","PeriodicalId":221120,"journal":{"name":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Prediction of characteristic points of hip and knee joint trajectories during overground walking using IMUs and Artificial Neural Networks\",\"authors\":\"S. Martinez, O. Kuzmicheva, A. Gräser\",\"doi\":\"10.1109/MeMeA.2016.7533795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a study on overground non-pathological gait, focusing on hip and knee joint trajectories in sagittal plane. The objects of study are some characteristic points of the joint curves (including the extrema) and their relation to gait parameters, namely normalized walking speed, cadence and normalized step length. The main objective is to predict the spatio-temporal values of these points depending on given gait parameters. To this end, a study with 18 healthy subjects was conducted, where they were asked to walk as comfortable as possible whilst following different tasks, namely walking with desired and given cadence, step length and speed. The data was processed and fed to artificial neural networks to obtain an algorithm able to predict the characteristic points. Specifics of the study protocol and data processing are presented, as well as the prediction results.\",\"PeriodicalId\":221120,\"journal\":{\"name\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2016.7533795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2016.7533795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文对地面非病理性步态进行了研究,重点研究了髋关节和膝关节在矢状面上的运动轨迹。研究对象是关节曲线的一些特征点(包括极值点)及其与归一化步行速度、步速、步长等步态参数的关系。主要目标是根据给定的步态参数预测这些点的时空值。为此,研究人员对18名健康受试者进行了一项研究,要求他们在完成不同的任务时尽可能舒适地行走,即以期望的和给定的节奏、步长和速度行走。对数据进行处理,并将其输入到人工神经网络中,得到一种能够预测特征点的算法。详细介绍了研究方案和数据处理,以及预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of characteristic points of hip and knee joint trajectories during overground walking using IMUs and Artificial Neural Networks
This paper presents a study on overground non-pathological gait, focusing on hip and knee joint trajectories in sagittal plane. The objects of study are some characteristic points of the joint curves (including the extrema) and their relation to gait parameters, namely normalized walking speed, cadence and normalized step length. The main objective is to predict the spatio-temporal values of these points depending on given gait parameters. To this end, a study with 18 healthy subjects was conducted, where they were asked to walk as comfortable as possible whilst following different tasks, namely walking with desired and given cadence, step length and speed. The data was processed and fed to artificial neural networks to obtain an algorithm able to predict the characteristic points. Specifics of the study protocol and data processing are presented, as well as the prediction results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of temperature rise in tissue — Mimicking material induced by a HIFU transducer Influence of fiber Bragg grating length on temperature measurements in laser-irradiated organs Optimal peripheral measurement point for the assessment of preterm patients in intensive care units Classification of cognitive and resting states of the brain using EEG features Scoring systems in dermatology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1