基于自适应偏最小二乘方法的导电管裂纹实时表征

M. Salucci, Shamim Ahmed, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, A. Massa
{"title":"基于自适应偏最小二乘方法的导电管裂纹实时表征","authors":"M. Salucci, Shamim Ahmed, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, A. Massa","doi":"10.1109/APUSNCURSINRSM.2017.8072053","DOIUrl":null,"url":null,"abstract":"This work deals with the real-time non-destructive testing and evaluation (NDT/NDE) of conductive tubes. An innovative learning-by-examples (LBE) strategy is proposed to address the inversion of eddy current testing (ECT) data. The partial least squares (PLS) features extraction technique is combined with an output space filling (OSF) adaptive sampling strategy in order to collect as much as possible information about the input/output (I/O) relationship to model, mitigating the negative effects of the curse of dimensionality. Robust and accurate predictions are then performed by means of support vector regression (SVR). A preliminary numerical validation is shown to prove the effectiveness of the approach.","PeriodicalId":264754,"journal":{"name":"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time crack characterization in conductive tubes through an adaptive partial least squares approach\",\"authors\":\"M. Salucci, Shamim Ahmed, N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, A. Massa\",\"doi\":\"10.1109/APUSNCURSINRSM.2017.8072053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with the real-time non-destructive testing and evaluation (NDT/NDE) of conductive tubes. An innovative learning-by-examples (LBE) strategy is proposed to address the inversion of eddy current testing (ECT) data. The partial least squares (PLS) features extraction technique is combined with an output space filling (OSF) adaptive sampling strategy in order to collect as much as possible information about the input/output (I/O) relationship to model, mitigating the negative effects of the curse of dimensionality. Robust and accurate predictions are then performed by means of support vector regression (SVR). A preliminary numerical validation is shown to prove the effectiveness of the approach.\",\"PeriodicalId\":264754,\"journal\":{\"name\":\"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APUSNCURSINRSM.2017.8072053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APUSNCURSINRSM.2017.8072053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作涉及导电管的实时无损检测与评价(NDT/NDE)。针对电涡流测试数据的反演问题,提出了一种创新的实例学习(LBE)方法。将偏最小二乘(PLS)特征提取技术与输出空间填充(OSF)自适应采样策略相结合,尽可能多地收集输入/输出(I/O)与模型的关系信息,减轻了维数的负面影响。然后通过支持向量回归(SVR)进行稳健和准确的预测。初步的数值验证表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time crack characterization in conductive tubes through an adaptive partial least squares approach
This work deals with the real-time non-destructive testing and evaluation (NDT/NDE) of conductive tubes. An innovative learning-by-examples (LBE) strategy is proposed to address the inversion of eddy current testing (ECT) data. The partial least squares (PLS) features extraction technique is combined with an output space filling (OSF) adaptive sampling strategy in order to collect as much as possible information about the input/output (I/O) relationship to model, mitigating the negative effects of the curse of dimensionality. Robust and accurate predictions are then performed by means of support vector regression (SVR). A preliminary numerical validation is shown to prove the effectiveness of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 3D printed dual GSM band near isotropic on-package antenna Effect of tumor tissue on implant antenna performance at 2.38 GHz Design of monopole antennas for uwb applications The importance of antenna near-field losses in intra-body UHF communication applications A miniaturized frequency selective surface by using vias to connect spiral lines and square patches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1