电化学法制备氧化镉纳米颗粒及其对羧酸的光降解及抗菌性能

H. Kumar, R. Shilpa, S. Ananda
{"title":"电化学法制备氧化镉纳米颗粒及其对羧酸的光降解及抗菌性能","authors":"H. Kumar, R. Shilpa, S. Ananda","doi":"10.30799/jnst.278.19050505","DOIUrl":null,"url":null,"abstract":"Cadmium oxide (CdO) nanomaterial has been synthesized by electrochemical method which is simple and inexpensive method. The synthesized cadmium oxide nanomaterial was used as a catalyst for the photocatalytic degradation of acetic acid, formic acid and oxalic acids under varies experimental conditions by volumetric method. The synthesized nanomaterials were characterized by various techniques such as UV-Visible spectroscopy, SEM-EDAX, FT-IR spectrum and X-ray diffraction studies. The UV-VIS spectroscopy study revealed that the band gap energy of cadmium oxide nanomaterials to be 2. 85 eV Tauc plot. The structure of cadmium oxide was found to be cubic structure and crystal size was found to be 32 nm which was confirmed from XRD data. SEM reports showed that the cadmium oxide nanomaterials have regular spherical shape and uniform size. The presence of cadmium and oxygen in the nanomaterial is confirmed from the EDAX spectrum. FT-IR spectra reveal the presence of characteristic band corresponds to Cd-O mode. The photocatalytic activity of the synthesized cadmium oxide nanomaterial was examined by the kinetics of photodegradation of carboxylic acids by volumetric method by using NaOH solution. Taft LFER was tested the isokinetic temperature β was calculated for oxidation of carboxylic acids. The antibacterial activity of cadmium oxide nanomaterial was investigated.","PeriodicalId":187599,"journal":{"name":"Journal of Nanoscience and Technology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Synthesis of Cadmium Oxide Nanoparticles by Electrochemical Method: Its Photodegradative Effects on Carboxylic Acids and Antibacterial Behaviours\",\"authors\":\"H. Kumar, R. Shilpa, S. Ananda\",\"doi\":\"10.30799/jnst.278.19050505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cadmium oxide (CdO) nanomaterial has been synthesized by electrochemical method which is simple and inexpensive method. The synthesized cadmium oxide nanomaterial was used as a catalyst for the photocatalytic degradation of acetic acid, formic acid and oxalic acids under varies experimental conditions by volumetric method. The synthesized nanomaterials were characterized by various techniques such as UV-Visible spectroscopy, SEM-EDAX, FT-IR spectrum and X-ray diffraction studies. The UV-VIS spectroscopy study revealed that the band gap energy of cadmium oxide nanomaterials to be 2. 85 eV Tauc plot. The structure of cadmium oxide was found to be cubic structure and crystal size was found to be 32 nm which was confirmed from XRD data. SEM reports showed that the cadmium oxide nanomaterials have regular spherical shape and uniform size. The presence of cadmium and oxygen in the nanomaterial is confirmed from the EDAX spectrum. FT-IR spectra reveal the presence of characteristic band corresponds to Cd-O mode. The photocatalytic activity of the synthesized cadmium oxide nanomaterial was examined by the kinetics of photodegradation of carboxylic acids by volumetric method by using NaOH solution. Taft LFER was tested the isokinetic temperature β was calculated for oxidation of carboxylic acids. The antibacterial activity of cadmium oxide nanomaterial was investigated.\",\"PeriodicalId\":187599,\"journal\":{\"name\":\"Journal of Nanoscience and Technology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoscience and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30799/jnst.278.19050505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoscience and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30799/jnst.278.19050505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

采用电化学方法合成了氧化镉(CdO)纳米材料,这是一种简单、廉价的方法。以合成的氧化镉纳米材料为催化剂,采用体积法在不同的实验条件下对乙酸、甲酸和草酸进行光催化降解。利用紫外可见光谱、SEM-EDAX、FT-IR光谱和x射线衍射等技术对合成的纳米材料进行了表征。紫外可见光谱研究表明,氧化镉纳米材料的带隙能为2。85 eV Tauc地块。XRD数据证实了氧化镉的结构为立方结构,晶粒尺寸为32 nm。SEM报告表明,氧化镉纳米材料具有规则的球形和均匀的尺寸。EDAX光谱证实了纳米材料中镉和氧的存在。FT-IR光谱显示存在对应Cd-O模式的特征带。采用NaOH溶液,用体积法考察了合成的氧化镉纳米材料对羧酸的光降解动力学。测定了Taft LFER,计算了羧酸氧化的等动温度β。研究了氧化镉纳米材料的抗菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Cadmium Oxide Nanoparticles by Electrochemical Method: Its Photodegradative Effects on Carboxylic Acids and Antibacterial Behaviours
Cadmium oxide (CdO) nanomaterial has been synthesized by electrochemical method which is simple and inexpensive method. The synthesized cadmium oxide nanomaterial was used as a catalyst for the photocatalytic degradation of acetic acid, formic acid and oxalic acids under varies experimental conditions by volumetric method. The synthesized nanomaterials were characterized by various techniques such as UV-Visible spectroscopy, SEM-EDAX, FT-IR spectrum and X-ray diffraction studies. The UV-VIS spectroscopy study revealed that the band gap energy of cadmium oxide nanomaterials to be 2. 85 eV Tauc plot. The structure of cadmium oxide was found to be cubic structure and crystal size was found to be 32 nm which was confirmed from XRD data. SEM reports showed that the cadmium oxide nanomaterials have regular spherical shape and uniform size. The presence of cadmium and oxygen in the nanomaterial is confirmed from the EDAX spectrum. FT-IR spectra reveal the presence of characteristic band corresponds to Cd-O mode. The photocatalytic activity of the synthesized cadmium oxide nanomaterial was examined by the kinetics of photodegradation of carboxylic acids by volumetric method by using NaOH solution. Taft LFER was tested the isokinetic temperature β was calculated for oxidation of carboxylic acids. The antibacterial activity of cadmium oxide nanomaterial was investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
0
期刊最新文献
Review on Green Synthesis of Nanoparticles using Various Strong Electrolytic Metal Solutions Mediated by Various Plant Parts In-vivo Anti-Diabetic Efficacy of Silver Nanoparticles from Marine Brown Seaweed Colpomenia sinuosa on Alloxan Stimulated Hyperglycemic Activity in Wistar Albino Rats Ag-Doped TiO2: Synthesis, Characterization and Photodegradation of 4BS Dye Annealing Effect on Nanocrystalline SnO2 Thin Films Prepared by Spray Pyrolysis Technique Carbon Dot-Lanthanide Composite Based Smart Luminescent Anticounterfeiting Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1