求解流水车间调度问题的混合离散粒子群算法

S. Chandrasekaran, S. Ponnambalam, R. Suresh, N. Vijayakumar
{"title":"求解流水车间调度问题的混合离散粒子群算法","authors":"S. Chandrasekaran, S. Ponnambalam, R. Suresh, N. Vijayakumar","doi":"10.1109/ICCIS.2006.252316","DOIUrl":null,"url":null,"abstract":"This paper presents a method of applying particle swarm optimization (PSO) algorithm to a flow shop scheduling problem. Permutation encoding of job indices is used to represent particles. One particle of the initial swarm is generated using NEH heuristic (M. Nawaz, Jr., 1995) and the remaining particles are generated randomly. A continuous swap mechanism is used to improve the performance of the discrete particle swarm optimization (DPSO) algorithm. Performance of the proposed algorithm is evaluated using the benchmark flow shop scheduling problems given by Taillard (1993). The computational results show that the hybrid approach is more effective","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A Hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems\",\"authors\":\"S. Chandrasekaran, S. Ponnambalam, R. Suresh, N. Vijayakumar\",\"doi\":\"10.1109/ICCIS.2006.252316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of applying particle swarm optimization (PSO) algorithm to a flow shop scheduling problem. Permutation encoding of job indices is used to represent particles. One particle of the initial swarm is generated using NEH heuristic (M. Nawaz, Jr., 1995) and the remaining particles are generated randomly. A continuous swap mechanism is used to improve the performance of the discrete particle swarm optimization (DPSO) algorithm. Performance of the proposed algorithm is evaluated using the benchmark flow shop scheduling problems given by Taillard (1993). The computational results show that the hybrid approach is more effective\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

提出了一种将粒子群优化算法应用于流水车间调度问题的方法。利用工作指标的排列编码来表示粒子。使用NEH启发式(M. Nawaz, Jr., 1995)生成初始群中的一个粒子,其余粒子随机生成。为了提高离散粒子群优化算法的性能,采用了连续交换机制。采用Taillard(1993)给出的基准流水车间调度问题对所提算法的性能进行了评价。计算结果表明,这种混合方法更有效
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems
This paper presents a method of applying particle swarm optimization (PSO) algorithm to a flow shop scheduling problem. Permutation encoding of job indices is used to represent particles. One particle of the initial swarm is generated using NEH heuristic (M. Nawaz, Jr., 1995) and the remaining particles are generated randomly. A continuous swap mechanism is used to improve the performance of the discrete particle swarm optimization (DPSO) algorithm. Performance of the proposed algorithm is evaluated using the benchmark flow shop scheduling problems given by Taillard (1993). The computational results show that the hybrid approach is more effective
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1