用可解释的人工智能探索确定性的频率偏差

Johannes Kruse, B. Schäfer, D. Witthaut
{"title":"用可解释的人工智能探索确定性的频率偏差","authors":"Johannes Kruse, B. Schäfer, D. Witthaut","doi":"10.1109/SmartGridComm51999.2021.9632335","DOIUrl":null,"url":null,"abstract":"Deterministic frequency deviations (DFDs) critically affect power grid frequency quality and power system stability. A better understanding of these events is urgently needed as frequency deviations raise the need for substantial control actions and thereby increase cost of operation. DFDs are partially explained by the rapid adjustment of power generation following the intervals of electricity trading, but this intuitive picture fails especially before and around noonday. In this article, we provide a detailed analysis of DFDs and their relation to external features using methods from eXplainable Artificial Intelligence. We establish a machine learning model that well describes the daily cycle of DFDs and elucidate key interdependencies using SHapley Additive exPlanations. Thereby, we identify solar ramps as critical to explain patterns in the Rate of Change of Frequency (RoCoF).","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exploring deterministic frequency deviations with explainable AI\",\"authors\":\"Johannes Kruse, B. Schäfer, D. Witthaut\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterministic frequency deviations (DFDs) critically affect power grid frequency quality and power system stability. A better understanding of these events is urgently needed as frequency deviations raise the need for substantial control actions and thereby increase cost of operation. DFDs are partially explained by the rapid adjustment of power generation following the intervals of electricity trading, but this intuitive picture fails especially before and around noonday. In this article, we provide a detailed analysis of DFDs and their relation to external features using methods from eXplainable Artificial Intelligence. We establish a machine learning model that well describes the daily cycle of DFDs and elucidate key interdependencies using SHapley Additive exPlanations. Thereby, we identify solar ramps as critical to explain patterns in the Rate of Change of Frequency (RoCoF).\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

确定性频率偏差严重影响电网频率质量和电力系统的稳定性。由于频率偏差增加了对实质性控制行动的需求,因此增加了运营成本,因此迫切需要更好地了解这些事件。dfd可以部分解释为电力交易间隔后发电量的快速调整,但这种直观的描述在中午之前和中午前后尤其失效。在本文中,我们使用可解释人工智能的方法详细分析了dfd及其与外部特征的关系。我们建立了一个机器学习模型,该模型很好地描述了dfd的日常循环,并使用SHapley加性解释阐明了关键的相互依赖性。因此,我们认为太阳能斜坡对于解释频率变化率(RoCoF)的模式至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring deterministic frequency deviations with explainable AI
Deterministic frequency deviations (DFDs) critically affect power grid frequency quality and power system stability. A better understanding of these events is urgently needed as frequency deviations raise the need for substantial control actions and thereby increase cost of operation. DFDs are partially explained by the rapid adjustment of power generation following the intervals of electricity trading, but this intuitive picture fails especially before and around noonday. In this article, we provide a detailed analysis of DFDs and their relation to external features using methods from eXplainable Artificial Intelligence. We establish a machine learning model that well describes the daily cycle of DFDs and elucidate key interdependencies using SHapley Additive exPlanations. Thereby, we identify solar ramps as critical to explain patterns in the Rate of Change of Frequency (RoCoF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1