{"title":"模因搜索中自适应算子选择的强化学习应用于二次分配问题","authors":"S. D. Handoko, D. Nguyen, Z. Yuan, H. Lau","doi":"10.1145/2598394.2598451","DOIUrl":null,"url":null,"abstract":"Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the selection of crossover operators in the course of the evolutionary search. We solve the proposed model by a Q-learning method. We experimentally verify the efficacy of our proposed approach on the benchmark instances of Quadratic Assignment Problem.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem\",\"authors\":\"S. D. Handoko, D. Nguyen, Z. Yuan, H. Lau\",\"doi\":\"10.1145/2598394.2598451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the selection of crossover operators in the course of the evolutionary search. We solve the proposed model by a Q-learning method. We experimentally verify the efficacy of our proposed approach on the benchmark instances of Quadratic Assignment Problem.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem
Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the selection of crossover operators in the course of the evolutionary search. We solve the proposed model by a Q-learning method. We experimentally verify the efficacy of our proposed approach on the benchmark instances of Quadratic Assignment Problem.