模因搜索中自适应算子选择的强化学习应用于二次分配问题

S. D. Handoko, D. Nguyen, Z. Yuan, H. Lau
{"title":"模因搜索中自适应算子选择的强化学习应用于二次分配问题","authors":"S. D. Handoko, D. Nguyen, Z. Yuan, H. Lau","doi":"10.1145/2598394.2598451","DOIUrl":null,"url":null,"abstract":"Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the selection of crossover operators in the course of the evolutionary search. We solve the proposed model by a Q-learning method. We experimentally verify the efficacy of our proposed approach on the benchmark instances of Quadratic Assignment Problem.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem\",\"authors\":\"S. D. Handoko, D. Nguyen, Z. Yuan, H. Lau\",\"doi\":\"10.1145/2598394.2598451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the selection of crossover operators in the course of the evolutionary search. We solve the proposed model by a Q-learning method. We experimentally verify the efficacy of our proposed approach on the benchmark instances of Quadratic Assignment Problem.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2598451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2598451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

模因搜索是最先进的元启发式方法之一,用于寻找np困难问题的高质量解决方案。其性能通常归因于适当的设计,包括其操作人员的选择。本文提出了一种马尔可夫决策过程模型,用于进化搜索过程中交叉算子的选择。我们用q -学习方法求解了该模型。我们在二次分配问题的基准实例上验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reinforcement learning for adaptive operator selection in memetic search applied to quadratic assignment problem
Memetic search is well known as one of the state-of-the-art metaheuristics for finding high-quality solutions to NP-hard problems. Its performance is often attributable to appropriate design, including the choice of its operators. In this paper, we propose a Markov Decision Process model for the selection of crossover operators in the course of the evolutionary search. We solve the proposed model by a Q-learning method. We experimentally verify the efficacy of our proposed approach on the benchmark instances of Quadratic Assignment Problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary synthesis of dynamical systems: the past, current, and future Incremental evolution of HERCL programs for robust control Selecting evolutionary operators using reinforcement learning: initial explorations Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks Artificial immune systems for optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1