基于光学和微波卫星观测的高分辨率土壤水分估算及其在CONUS干旱分析中的应用

Donglian Sun, Yu Li, X. Zhan, Chaowei Yang, Ruixin Yang
{"title":"基于光学和微波卫星观测的高分辨率土壤水分估算及其在CONUS干旱分析中的应用","authors":"Donglian Sun, Yu Li, X. Zhan, Chaowei Yang, Ruixin Yang","doi":"10.24294/jgc.v4i1.1313","DOIUrl":null,"url":null,"abstract":"In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.","PeriodicalId":363659,"journal":{"name":"Journal of Geography and Cartography","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating optical and microwave satellite observations for high res-olution soil moisture estimate and applications in CONUS drought analyses\",\"authors\":\"Donglian Sun, Yu Li, X. Zhan, Chaowei Yang, Ruixin Yang\",\"doi\":\"10.24294/jgc.v4i1.1313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.\",\"PeriodicalId\":363659,\"journal\":{\"name\":\"Journal of Geography and Cartography\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geography and Cartography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24294/jgc.v4i1.1313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geography and Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/jgc.v4i1.1313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,将光学和微波卫星观测结合起来,以与光学传感器相同的空间分辨率估算土壤湿度(这里为5km),并将其应用于美国大陆的干旱分析。在传统的通用三角法中,除了归一化植被指数(NDVI)和地表温度(LST)外,还引入了土壤质地、地形、地表类型、累积降水等辅助数据。研究发现,利用累积降水建立的土壤湿度模型与美国干旱监测(USDM)的空间模式非常吻合。目前,USDM正在提供每周地图。最近,“闪电”干旱概念出现。为了获得逐日的干旱图,利用微波观测得到的地表温度,将其缩小到与热红外地表温度产品相同的分辨率,并用于填补光学地表温度数据中由于云的影响而出现的空白。利用几乎所有天气条件下的综合日地表温度,可以以相对较高的空间分辨率估算土壤日湿度,从而可以逐日获得基于土壤水分异常的干旱图,为暴发性干旱分析和监测提供可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating optical and microwave satellite observations for high res-olution soil moisture estimate and applications in CONUS drought analyses
In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrating in-situ hydraulic conductivity measurements and vertical electrical sounding for groundwater exploration in fractured shales within Alex Ekwueme Federal University Ndufu Alike (AE-FUNAI), South Eastern Nigeria Cartographical digital products: Maps, 3D models, diagrams An integrated urban water resources management approach for infrastructure and urban planning On the elemental contents of aspen (Populus tremula L.) leaves grown in the mineralization area Comparative study of sediment loading in sub-watersheds of Phewa Lake, Nepal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1