{"title":"从未校准的视轮廓视图重建曲面的仿射","authors":"J. Sato, R. Cipolla","doi":"10.1109/ICCV.1998.710796","DOIUrl":null,"url":null,"abstract":"In this paper, we show that even if the camera is uncalibrated, and its translational motion is unknown, curved surfaces can be reconstructed from their apparent contours up to a 3D affine ambiguity. Furthermore, we show that even if the reconstruction is nonmetric (non-Euclidean), we can still extract useful information for many computer vision applications just from the apparent contours. We first show that if the camera undergoes pure translation (unknown direction and magnitude), the epipolar geometry can be recovered from the apparent contours without using any search or optimisation process. The extracted epipolar geometry is next used for reconstructing curved surfaces from the deformations of the apparent contours viewed from uncalibrated cameras. The result is applied to distinguishing curved surfaces from fixed features in images. It is also shown that the time-to-contact to the curved surfaces can be computed from simple measurements of the apparent contours. The proposed method is implemented and tested on real images of curved surfaces.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Affine reconstruction of curved surfaces from uncalibrated views of apparent contours\",\"authors\":\"J. Sato, R. Cipolla\",\"doi\":\"10.1109/ICCV.1998.710796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that even if the camera is uncalibrated, and its translational motion is unknown, curved surfaces can be reconstructed from their apparent contours up to a 3D affine ambiguity. Furthermore, we show that even if the reconstruction is nonmetric (non-Euclidean), we can still extract useful information for many computer vision applications just from the apparent contours. We first show that if the camera undergoes pure translation (unknown direction and magnitude), the epipolar geometry can be recovered from the apparent contours without using any search or optimisation process. The extracted epipolar geometry is next used for reconstructing curved surfaces from the deformations of the apparent contours viewed from uncalibrated cameras. The result is applied to distinguishing curved surfaces from fixed features in images. It is also shown that the time-to-contact to the curved surfaces can be computed from simple measurements of the apparent contours. The proposed method is implemented and tested on real images of curved surfaces.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Affine reconstruction of curved surfaces from uncalibrated views of apparent contours
In this paper, we show that even if the camera is uncalibrated, and its translational motion is unknown, curved surfaces can be reconstructed from their apparent contours up to a 3D affine ambiguity. Furthermore, we show that even if the reconstruction is nonmetric (non-Euclidean), we can still extract useful information for many computer vision applications just from the apparent contours. We first show that if the camera undergoes pure translation (unknown direction and magnitude), the epipolar geometry can be recovered from the apparent contours without using any search or optimisation process. The extracted epipolar geometry is next used for reconstructing curved surfaces from the deformations of the apparent contours viewed from uncalibrated cameras. The result is applied to distinguishing curved surfaces from fixed features in images. It is also shown that the time-to-contact to the curved surfaces can be computed from simple measurements of the apparent contours. The proposed method is implemented and tested on real images of curved surfaces.