科里奥利振动陀螺仪中分频静电调谐引起的不稳定性

D. Vatanparvar, A. Shkel
{"title":"科里奥利振动陀螺仪中分频静电调谐引起的不稳定性","authors":"D. Vatanparvar, A. Shkel","doi":"10.1109/SENSORS47125.2020.9278845","DOIUrl":null,"url":null,"abstract":"In order to improve the angular rate sensitivity in Coriolis Vibratory Gyroscopes (CVG), an electrostatic frequency tuning mechanism is often used to reduce the split in the resonant frequency of gyroscopes. In this paper, the effect of the amplitude-frequency coupling, as a ramification of the electrostatic frequency tuning, on gyroscope operation in the open-loop angular rate mode is studied. We demonstrate that the amplitude-frequency coupling results in instability in the resonant frequency along the drive axis which degrades the noise performance of a CVG. We present a model that describes the non-linear dynamics of a gyroscope along the drive axis, including the amplitude-frequency coupling terms beyond the Duffing and quintic nonlinearity. Analytical equations were derived to estimate the correlation between frequency noise and amplitude noise. The non-linear electrostatic spring stiffness and the frequency noise in a Dual Foucault Pendulum (DFP) gyroscope were characterized and a good agreement with the predictive analytical model was observed. Our study suggests that as the required tuning voltage for mode-matching is increased, the frequency stability in the gyroscope degrades and the quadrature noise limits the noise performance of the gyroscope. In the case of the DFP gyroscope, we demonstrated that a reduction of the drive amplitude, which reduces the amplitude-frequency coupling, resulted in a 3 times improvement in the Angle Random Walk (ARW) and Bias Instability (BI).","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Instabilities due to Electrostatic Tuning of Frequency-Split in Coriolis Vibratory Gyroscopes\",\"authors\":\"D. Vatanparvar, A. Shkel\",\"doi\":\"10.1109/SENSORS47125.2020.9278845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the angular rate sensitivity in Coriolis Vibratory Gyroscopes (CVG), an electrostatic frequency tuning mechanism is often used to reduce the split in the resonant frequency of gyroscopes. In this paper, the effect of the amplitude-frequency coupling, as a ramification of the electrostatic frequency tuning, on gyroscope operation in the open-loop angular rate mode is studied. We demonstrate that the amplitude-frequency coupling results in instability in the resonant frequency along the drive axis which degrades the noise performance of a CVG. We present a model that describes the non-linear dynamics of a gyroscope along the drive axis, including the amplitude-frequency coupling terms beyond the Duffing and quintic nonlinearity. Analytical equations were derived to estimate the correlation between frequency noise and amplitude noise. The non-linear electrostatic spring stiffness and the frequency noise in a Dual Foucault Pendulum (DFP) gyroscope were characterized and a good agreement with the predictive analytical model was observed. Our study suggests that as the required tuning voltage for mode-matching is increased, the frequency stability in the gyroscope degrades and the quadrature noise limits the noise performance of the gyroscope. In the case of the DFP gyroscope, we demonstrated that a reduction of the drive amplitude, which reduces the amplitude-frequency coupling, resulted in a 3 times improvement in the Angle Random Walk (ARW) and Bias Instability (BI).\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278845\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高科里奥利振动陀螺仪(CVG)的角速度灵敏度,通常采用静电频率调谐机制来减小陀螺仪谐振频率的分裂。本文研究了作为静电频率调谐的一个分支的幅频耦合对开环角速率模式下陀螺仪工作的影响。我们证明了幅频耦合导致沿驱动轴的谐振频率不稳定,从而降低了CVG的噪声性能。我们提出了一个描述陀螺仪沿驱动轴非线性动力学的模型,包括超出Duffing和五次非线性的幅频耦合项。推导了频率噪声和幅值噪声的解析方程。对双傅柯摆陀螺仪的非线性静电弹簧刚度和频率噪声进行了表征,与预测分析模型吻合较好。我们的研究表明,随着模式匹配所需调谐电压的增加,陀螺仪的频率稳定性下降,并且正交噪声限制了陀螺仪的噪声性能。在DFP陀螺仪的情况下,我们证明了驱动幅度的减少,从而减少了幅频耦合,导致角度随机游走(ARW)和偏置不稳定性(BI)提高了3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Instabilities due to Electrostatic Tuning of Frequency-Split in Coriolis Vibratory Gyroscopes
In order to improve the angular rate sensitivity in Coriolis Vibratory Gyroscopes (CVG), an electrostatic frequency tuning mechanism is often used to reduce the split in the resonant frequency of gyroscopes. In this paper, the effect of the amplitude-frequency coupling, as a ramification of the electrostatic frequency tuning, on gyroscope operation in the open-loop angular rate mode is studied. We demonstrate that the amplitude-frequency coupling results in instability in the resonant frequency along the drive axis which degrades the noise performance of a CVG. We present a model that describes the non-linear dynamics of a gyroscope along the drive axis, including the amplitude-frequency coupling terms beyond the Duffing and quintic nonlinearity. Analytical equations were derived to estimate the correlation between frequency noise and amplitude noise. The non-linear electrostatic spring stiffness and the frequency noise in a Dual Foucault Pendulum (DFP) gyroscope were characterized and a good agreement with the predictive analytical model was observed. Our study suggests that as the required tuning voltage for mode-matching is increased, the frequency stability in the gyroscope degrades and the quadrature noise limits the noise performance of the gyroscope. In the case of the DFP gyroscope, we demonstrated that a reduction of the drive amplitude, which reduces the amplitude-frequency coupling, resulted in a 3 times improvement in the Angle Random Walk (ARW) and Bias Instability (BI).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quartz Crystal Microbalance Sensor Based on Peptide Anchored Single-Walled Carbon Nanotubes for Highly Selective TNT Explosive Detection BaTiO3 sensitive film enhancement for CO2 detection Comparable Data Evaluation Method for a Radio-Nuclear Sensor When Used on an UAV Reusable acoustic tweezers enable 2D patterning of microparticles in microchamber on a disposable silicon chip superstrate Optimizing Novel Inorganic Scintillation Detectors for Applications in Medical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1