基于互信息估计的深度学习窃听编码

Rick Fritschek, R. Schaefer, G. Wunder
{"title":"基于互信息估计的深度学习窃听编码","authors":"Rick Fritschek, R. Schaefer, G. Wunder","doi":"10.1145/3395352.3402654","DOIUrl":null,"url":null,"abstract":"Recently, deep learning of encoding and decoding functions for wireless communication has emerged as a promising research direction and gained considerable interest due to its impressive results. A specific direction in this growing field are neural network-aided techniques that work without a fixed channel model. These approaches utilize generative adversarial networks, reinforcement learning, or mutual information estimation to overcome the need of a known channel model for training. This paper focuses on the last approach and extend it to secure channel coding schemes by sampling the legitimate channel and additionally introduce security constraints for communication. This results in a mixed optimization between the mutual information estimate, the reliability of the code and its secrecy constraint. It is believed that this lays the foundation for flexible, generalizable physical layer security approaches due to its independence of specific model assumptions.","PeriodicalId":370816,"journal":{"name":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Deep learning based wiretap coding via mutual information estimation\",\"authors\":\"Rick Fritschek, R. Schaefer, G. Wunder\",\"doi\":\"10.1145/3395352.3402654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep learning of encoding and decoding functions for wireless communication has emerged as a promising research direction and gained considerable interest due to its impressive results. A specific direction in this growing field are neural network-aided techniques that work without a fixed channel model. These approaches utilize generative adversarial networks, reinforcement learning, or mutual information estimation to overcome the need of a known channel model for training. This paper focuses on the last approach and extend it to secure channel coding schemes by sampling the legitimate channel and additionally introduce security constraints for communication. This results in a mixed optimization between the mutual information estimate, the reliability of the code and its secrecy constraint. It is believed that this lays the foundation for flexible, generalizable physical layer security approaches due to its independence of specific model assumptions.\",\"PeriodicalId\":370816,\"journal\":{\"name\":\"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3395352.3402654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3395352.3402654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

近年来,无线通信编码和解码功能的深度学习已成为一个很有前途的研究方向,并因其令人印象深刻的成果而引起了人们的极大兴趣。在这个不断发展的领域中,一个特定的方向是神经网络辅助技术,它可以在没有固定通道模型的情况下工作。这些方法利用生成对抗网络、强化学习或互信息估计来克服对已知通道模型的训练需求。本文重点介绍了最后一种方法,并通过对合法信道进行采样,将其扩展到安全信道编码方案中,并引入了通信的安全约束。这导致了互信息估计、代码可靠性及其保密约束之间的混合优化。由于它独立于特定的模型假设,因此可以为灵活、通用的物理层安全方法奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning based wiretap coding via mutual information estimation
Recently, deep learning of encoding and decoding functions for wireless communication has emerged as a promising research direction and gained considerable interest due to its impressive results. A specific direction in this growing field are neural network-aided techniques that work without a fixed channel model. These approaches utilize generative adversarial networks, reinforcement learning, or mutual information estimation to overcome the need of a known channel model for training. This paper focuses on the last approach and extend it to secure channel coding schemes by sampling the legitimate channel and additionally introduce security constraints for communication. This results in a mixed optimization between the mutual information estimate, the reliability of the code and its secrecy constraint. It is believed that this lays the foundation for flexible, generalizable physical layer security approaches due to its independence of specific model assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wideband spectral monitoring using deep learning Generalized wireless adversarial deep learning Retracted on July 26, 2022: Open set recognition through unsupervised and class-distance learning Encrypted rich-data steganography using generative adversarial networks Generative adversarial attacks against intrusion detection systems using active learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1