基于密集网络模型的交通标志板识别与语音报警系统

Anuja P, Anuja S. B
{"title":"基于密集网络模型的交通标志板识别与语音报警系统","authors":"Anuja P, Anuja S. B","doi":"10.59544/qroq2978/ngcesi23p35","DOIUrl":null,"url":null,"abstract":"To ensure a smooth and secure flow of traffic, road signs are essential. A major cause of road accidents is negligence in viewing the Traffic signboards and interpreting them incorrectly. The proposed system helps in recognizing the Traffic sign and sending a voice alert through the speaker to the driver so that he/ she may take necessary decisions. The proposed system is trained using Convolutional Neural Network (CNN) which helps in traffic sign image recognition and classification. A set of classes are defined and trained on a particular dataset to make it more accurate. The German Traffic Sign Benchmarks Dataset was used, which contains approximately 43 categories and 51,900 images of traffic signs. The accuracy of the execution is about 98.52 percent. Following the detection of the sign by the system, a voice alert is sent through the speaker which notifies the driver. The proposed system also contains a section where the vehicle driver is alerted about the traffic signs in the near proximity which helps them to be aware of what rules to follow on the route. The aim of this system is to ensure the safety of the vehicle’s driver, passengers, and pedestrians.","PeriodicalId":315694,"journal":{"name":"The International Conference on scientific innovations in Science, Technology, and Management","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense Net Model Based Traffic Sign Board Recognition and Voice Alert System\",\"authors\":\"Anuja P, Anuja S. B\",\"doi\":\"10.59544/qroq2978/ngcesi23p35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To ensure a smooth and secure flow of traffic, road signs are essential. A major cause of road accidents is negligence in viewing the Traffic signboards and interpreting them incorrectly. The proposed system helps in recognizing the Traffic sign and sending a voice alert through the speaker to the driver so that he/ she may take necessary decisions. The proposed system is trained using Convolutional Neural Network (CNN) which helps in traffic sign image recognition and classification. A set of classes are defined and trained on a particular dataset to make it more accurate. The German Traffic Sign Benchmarks Dataset was used, which contains approximately 43 categories and 51,900 images of traffic signs. The accuracy of the execution is about 98.52 percent. Following the detection of the sign by the system, a voice alert is sent through the speaker which notifies the driver. The proposed system also contains a section where the vehicle driver is alerted about the traffic signs in the near proximity which helps them to be aware of what rules to follow on the route. The aim of this system is to ensure the safety of the vehicle’s driver, passengers, and pedestrians.\",\"PeriodicalId\":315694,\"journal\":{\"name\":\"The International Conference on scientific innovations in Science, Technology, and Management\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Conference on scientific innovations in Science, Technology, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59544/qroq2978/ngcesi23p35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on scientific innovations in Science, Technology, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59544/qroq2978/ngcesi23p35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了确保交通的顺畅和安全,道路标志是必不可少的。道路交通事故的一个主要原因是疏忽观看交通标志并错误地解读它们。该系统可以识别交通标志,并通过扬声器向驾驶员发送语音警报,以便他/她做出必要的决定。该系统使用卷积神经网络(CNN)进行训练,有助于交通标志图像的识别和分类。在特定的数据集上定义和训练一组类,以使其更准确。使用了德国交通标志基准数据集,其中包含大约43个类别和51,900张交通标志图像。执行的准确率约为98.52%。在系统检测到标志后,通过扬声器发送语音警报,通知驾驶员。拟议中的系统还包含一个部分,在这个部分中,车辆司机会收到附近交通标志的警报,这有助于他们了解在行驶路线上应该遵守哪些规则。该系统的目的是确保车辆驾驶员、乘客和行人的安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dense Net Model Based Traffic Sign Board Recognition and Voice Alert System
To ensure a smooth and secure flow of traffic, road signs are essential. A major cause of road accidents is negligence in viewing the Traffic signboards and interpreting them incorrectly. The proposed system helps in recognizing the Traffic sign and sending a voice alert through the speaker to the driver so that he/ she may take necessary decisions. The proposed system is trained using Convolutional Neural Network (CNN) which helps in traffic sign image recognition and classification. A set of classes are defined and trained on a particular dataset to make it more accurate. The German Traffic Sign Benchmarks Dataset was used, which contains approximately 43 categories and 51,900 images of traffic signs. The accuracy of the execution is about 98.52 percent. Following the detection of the sign by the system, a voice alert is sent through the speaker which notifies the driver. The proposed system also contains a section where the vehicle driver is alerted about the traffic signs in the near proximity which helps them to be aware of what rules to follow on the route. The aim of this system is to ensure the safety of the vehicle’s driver, passengers, and pedestrians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Tongue Diagnosis: A Deep Autoencoder Neural Network and Clustering-Based Image Segmentation Approach A study on Organizational Culture and its Impact on Employees Behaviour with special reference to TTK Prestige Ltd, Coimbatore A Study on Effectiveness of Performance Appraisal System With Reference To Santhigiri Ashram, Trivandrum Early Stage Diabetes Prediction of Patients in Big Data Healthcare Using Sophisticated Machine Learning Approach A Study on Effectiveness of Motivational on Employee with Special Reference to Shiash Info Solutions Pvt Ltd, Chennai.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1