Guanchu Chen, Hiroki Yamashita, Y. Ruan, P. Jayakumar, H. Sugiyama
{"title":"基于计算负载平衡的小尺度离散元模型多尺度越野机动仿真","authors":"Guanchu Chen, Hiroki Yamashita, Y. Ruan, P. Jayakumar, H. Sugiyama","doi":"10.1115/detc2020-22195","DOIUrl":null,"url":null,"abstract":"\n Scalable parallel computing schemes play an important role in physics-based off-road mobility simulations due to complexities in modeling soil behavior for vehicle-terrain interaction. With the hierarchical multiscale off-road mobility simulation capability, limitations of existing computational deformable terrain models can be eliminated, including the use of phenomenological constitutive assumptions in finite element (FE) approaches as well as high computational intensity of discrete element (DE) models. However, parallel computing algorithms for multiscale simulations need to be carefully developed due to possible unbalanced computational loads occurring in lower-scale RVE simulations, which prevents desirable computational speedup. Therefore, this study aims to develop a scalable hybrid MPI-OpenMP parallel computing framework for hierarchical FE-DE multiscale off-road mobility simulations with a special focus on computational load balancing for the lower-scale DE models.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Off-Road Mobility Simulation With Computational Load Balancing for Lower-Scale Discrete-Element Models\",\"authors\":\"Guanchu Chen, Hiroki Yamashita, Y. Ruan, P. Jayakumar, H. Sugiyama\",\"doi\":\"10.1115/detc2020-22195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Scalable parallel computing schemes play an important role in physics-based off-road mobility simulations due to complexities in modeling soil behavior for vehicle-terrain interaction. With the hierarchical multiscale off-road mobility simulation capability, limitations of existing computational deformable terrain models can be eliminated, including the use of phenomenological constitutive assumptions in finite element (FE) approaches as well as high computational intensity of discrete element (DE) models. However, parallel computing algorithms for multiscale simulations need to be carefully developed due to possible unbalanced computational loads occurring in lower-scale RVE simulations, which prevents desirable computational speedup. Therefore, this study aims to develop a scalable hybrid MPI-OpenMP parallel computing framework for hierarchical FE-DE multiscale off-road mobility simulations with a special focus on computational load balancing for the lower-scale DE models.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiscale Off-Road Mobility Simulation With Computational Load Balancing for Lower-Scale Discrete-Element Models
Scalable parallel computing schemes play an important role in physics-based off-road mobility simulations due to complexities in modeling soil behavior for vehicle-terrain interaction. With the hierarchical multiscale off-road mobility simulation capability, limitations of existing computational deformable terrain models can be eliminated, including the use of phenomenological constitutive assumptions in finite element (FE) approaches as well as high computational intensity of discrete element (DE) models. However, parallel computing algorithms for multiscale simulations need to be carefully developed due to possible unbalanced computational loads occurring in lower-scale RVE simulations, which prevents desirable computational speedup. Therefore, this study aims to develop a scalable hybrid MPI-OpenMP parallel computing framework for hierarchical FE-DE multiscale off-road mobility simulations with a special focus on computational load balancing for the lower-scale DE models.