{"title":"基于改进LOS算法和Aquila优化算法的机动浮标路径跟踪","authors":"Fengxu Guan, Zipeng Yang, Xu Zhang, Jiawei Huang","doi":"10.1109/ICMA54519.2022.9856219","DOIUrl":null,"url":null,"abstract":"This paper improves the traditional LOS guidance algorithm and obtains a Los guidance algorithm based on time-varying virtual guidance distance. Through comparative simulation, it is proved that the method is better to solve the guidance angle when designing the path following controller of motorized buoy. On the other hand, in order to reduce the unnecessary energy loss of the motorized buoy, the rudder energy loss of the motorized buoy is taken into account, and a more energy-saving path following controller of the motorized buoy is designed. Aquila optimizer is introduced to complete the solution of the control quantity. Ultimately, through comparative simulation, it is proved that the improved controller can achieve more energy-saving control performance while maintaining superior track control effect.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Motorized buoy path following based on improved LOS algorithm and Aquila optimizer algorithm\",\"authors\":\"Fengxu Guan, Zipeng Yang, Xu Zhang, Jiawei Huang\",\"doi\":\"10.1109/ICMA54519.2022.9856219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper improves the traditional LOS guidance algorithm and obtains a Los guidance algorithm based on time-varying virtual guidance distance. Through comparative simulation, it is proved that the method is better to solve the guidance angle when designing the path following controller of motorized buoy. On the other hand, in order to reduce the unnecessary energy loss of the motorized buoy, the rudder energy loss of the motorized buoy is taken into account, and a more energy-saving path following controller of the motorized buoy is designed. Aquila optimizer is introduced to complete the solution of the control quantity. Ultimately, through comparative simulation, it is proved that the improved controller can achieve more energy-saving control performance while maintaining superior track control effect.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9856219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9856219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motorized buoy path following based on improved LOS algorithm and Aquila optimizer algorithm
This paper improves the traditional LOS guidance algorithm and obtains a Los guidance algorithm based on time-varying virtual guidance distance. Through comparative simulation, it is proved that the method is better to solve the guidance angle when designing the path following controller of motorized buoy. On the other hand, in order to reduce the unnecessary energy loss of the motorized buoy, the rudder energy loss of the motorized buoy is taken into account, and a more energy-saving path following controller of the motorized buoy is designed. Aquila optimizer is introduced to complete the solution of the control quantity. Ultimately, through comparative simulation, it is proved that the improved controller can achieve more energy-saving control performance while maintaining superior track control effect.