{"title":"同时多波束声纳成像的跳频模式","authors":"P. Cassereau, J. Jaffe","doi":"10.1109/ICASSP.1987.1169477","DOIUrl":null,"url":null,"abstract":"This paper describes the design of frequency-hopped signals for a multi-beam imaging system. A frequency hopping pattern is a frequency-coded uniform pulse train. The signal is divided into M time intervals, with each interval assigned a different frequency chosen from a set of N frequencies. A set of N patterns composed of N-1 frequencies can be generated using first-order Reed-Solomon codewords. These patterns exhibit very good correlation properties. In a frequency-hopped multi-beam imaging system, each beam is associated with a pattern and transmits a coded waveform. All N beams can be transmitted simultaneously resulting in a high scan-rate, high resolution imaging device. Furthermore, in the presence of noise and medium spreading effects, a frequency-hopped imaging device performs better than conventional systems by showing better noise rejection and less sensitivity to spreading effects.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Frequency hopping patterns for simultaneous multiple-beam sonar imaging\",\"authors\":\"P. Cassereau, J. Jaffe\",\"doi\":\"10.1109/ICASSP.1987.1169477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design of frequency-hopped signals for a multi-beam imaging system. A frequency hopping pattern is a frequency-coded uniform pulse train. The signal is divided into M time intervals, with each interval assigned a different frequency chosen from a set of N frequencies. A set of N patterns composed of N-1 frequencies can be generated using first-order Reed-Solomon codewords. These patterns exhibit very good correlation properties. In a frequency-hopped multi-beam imaging system, each beam is associated with a pattern and transmits a coded waveform. All N beams can be transmitted simultaneously resulting in a high scan-rate, high resolution imaging device. Furthermore, in the presence of noise and medium spreading effects, a frequency-hopped imaging device performs better than conventional systems by showing better noise rejection and less sensitivity to spreading effects.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frequency hopping patterns for simultaneous multiple-beam sonar imaging
This paper describes the design of frequency-hopped signals for a multi-beam imaging system. A frequency hopping pattern is a frequency-coded uniform pulse train. The signal is divided into M time intervals, with each interval assigned a different frequency chosen from a set of N frequencies. A set of N patterns composed of N-1 frequencies can be generated using first-order Reed-Solomon codewords. These patterns exhibit very good correlation properties. In a frequency-hopped multi-beam imaging system, each beam is associated with a pattern and transmits a coded waveform. All N beams can be transmitted simultaneously resulting in a high scan-rate, high resolution imaging device. Furthermore, in the presence of noise and medium spreading effects, a frequency-hopped imaging device performs better than conventional systems by showing better noise rejection and less sensitivity to spreading effects.