超临界CO2联合动力和液化循环

Griffin C. Beck, D. Ransom, K. Hoopes
{"title":"超临界CO2联合动力和液化循环","authors":"Griffin C. Beck, D. Ransom, K. Hoopes","doi":"10.1115/gt2019-91371","DOIUrl":null,"url":null,"abstract":"\n Natural gas production has increased dramatically in recent years due to advances in horizontal drilling and hydraulic fracturing techniques. There are still challenges that must be addressed by industry to better utilize these abundant natural gas resources. For example, due to the cost and complexity with piping installations from remote well sites to processing facilities (should they exist), natural gas is often flared at the site whereas the liquid hydrocarbons are stored in holding tanks.\n For the natural gas that is recovered and processed, there are currently economic benefits to exporting the gas to international markets, provided that the gas can be liquefied and shipped. While the number of liquefaction facilities has increased in recent years, additional liquefaction plants are needed.\n This paper introduces a novel liquefaction cycle that utilizes a supercritical carbon dioxide (sCO2) power cycle to provide power and initial stages of refrigeration to a natural gas liquefaction cycle. The liquefaction cycle uses a flow of CO2 extracted from the power cycle as well as natural gas to provide several stages of refrigeration capable of liquefying the process stream. The combined sCO2 power and liquefaction cycle is described in detail and initial cycle analyses are presented. The cycle performance is compared to small-scale natural gas liquefaction cycles and is shown to provide comparable performance to the reviewed cycles. Due to the compact nature of the sCO2 power cycle equipment, the sCO2 liquefaction cycle described herein can provide small, modular liquefaction plants that can be employed at individual well sites to liquefy and store the natural gas as opposed to flaring the gas.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Supercritical CO2 Combined Power and Liquefaction Cycle\",\"authors\":\"Griffin C. Beck, D. Ransom, K. Hoopes\",\"doi\":\"10.1115/gt2019-91371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Natural gas production has increased dramatically in recent years due to advances in horizontal drilling and hydraulic fracturing techniques. There are still challenges that must be addressed by industry to better utilize these abundant natural gas resources. For example, due to the cost and complexity with piping installations from remote well sites to processing facilities (should they exist), natural gas is often flared at the site whereas the liquid hydrocarbons are stored in holding tanks.\\n For the natural gas that is recovered and processed, there are currently economic benefits to exporting the gas to international markets, provided that the gas can be liquefied and shipped. While the number of liquefaction facilities has increased in recent years, additional liquefaction plants are needed.\\n This paper introduces a novel liquefaction cycle that utilizes a supercritical carbon dioxide (sCO2) power cycle to provide power and initial stages of refrigeration to a natural gas liquefaction cycle. The liquefaction cycle uses a flow of CO2 extracted from the power cycle as well as natural gas to provide several stages of refrigeration capable of liquefying the process stream. The combined sCO2 power and liquefaction cycle is described in detail and initial cycle analyses are presented. The cycle performance is compared to small-scale natural gas liquefaction cycles and is shown to provide comparable performance to the reviewed cycles. Due to the compact nature of the sCO2 power cycle equipment, the sCO2 liquefaction cycle described herein can provide small, modular liquefaction plants that can be employed at individual well sites to liquefy and store the natural gas as opposed to flaring the gas.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"242 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-91371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-91371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于水平钻井和水力压裂技术的进步,天然气产量急剧增加。为了更好地利用这些丰富的天然气资源,工业部门仍然需要解决一些挑战。例如,由于从偏远井场到处理设施(如果有的话)的管道安装的成本和复杂性,天然气通常在现场燃烧,而液态碳氢化合物则储存在储罐中。对于回收和加工的天然气,如果可以液化和运输,目前将天然气出口到国际市场是有经济效益的。虽然近年来液化设施的数量有所增加,但还需要额外的液化工厂。本文介绍了一种新型液化循环,它利用超临界二氧化碳(sCO2)动力循环为天然气液化循环提供动力和初始阶段的制冷。液化循环使用从电力循环中提取的二氧化碳流以及天然气来提供能够液化工艺流的几个阶段的制冷。详细介绍了sCO2动力与液化联合循环,并进行了初始循环分析。循环性能与小规模天然气液化循环进行了比较,并显示出与所述循环相当的性能。由于sCO2动力循环设备的紧凑性,本文所述的sCO2液化循环可以提供小型模块化液化工厂,可用于单个井场液化和储存天然气,而不是将天然气燃烧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Supercritical CO2 Combined Power and Liquefaction Cycle
Natural gas production has increased dramatically in recent years due to advances in horizontal drilling and hydraulic fracturing techniques. There are still challenges that must be addressed by industry to better utilize these abundant natural gas resources. For example, due to the cost and complexity with piping installations from remote well sites to processing facilities (should they exist), natural gas is often flared at the site whereas the liquid hydrocarbons are stored in holding tanks. For the natural gas that is recovered and processed, there are currently economic benefits to exporting the gas to international markets, provided that the gas can be liquefied and shipped. While the number of liquefaction facilities has increased in recent years, additional liquefaction plants are needed. This paper introduces a novel liquefaction cycle that utilizes a supercritical carbon dioxide (sCO2) power cycle to provide power and initial stages of refrigeration to a natural gas liquefaction cycle. The liquefaction cycle uses a flow of CO2 extracted from the power cycle as well as natural gas to provide several stages of refrigeration capable of liquefying the process stream. The combined sCO2 power and liquefaction cycle is described in detail and initial cycle analyses are presented. The cycle performance is compared to small-scale natural gas liquefaction cycles and is shown to provide comparable performance to the reviewed cycles. Due to the compact nature of the sCO2 power cycle equipment, the sCO2 liquefaction cycle described herein can provide small, modular liquefaction plants that can be employed at individual well sites to liquefy and store the natural gas as opposed to flaring the gas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1