论醉酒驾驶案件刑罚预测系统的开发

Meng-Luen Wu, Chen Lin, Po-Cheng Yu
{"title":"论醉酒驾驶案件刑罚预测系统的开发","authors":"Meng-Luen Wu, Chen Lin, Po-Cheng Yu","doi":"10.1109/ICMLC56445.2022.9941286","DOIUrl":null,"url":null,"abstract":"Recent years, computer-aided penalty prediction have been promoted to gain people's trust to the judicial systems, especially in developing Chinese region. In this paper, we propose machine learning based models to predict the legal penalty of criminal cases. Particularly, we focus on drunk driving cases as they are frequent, and the regulations are clear. Unlike western text which words are separated by spaces, words in Chinese text are continuum. In our proposed method, we first use a word segmentation method to separate the Chinese words in text and apply a pre-trained model to convert words into vectors. In the vector space, words with similar meanings have short distance with each other. As the amount of each penalty varies greatly, resulting a data imbalance problem. Therefore, we adapt the Synthetic Minority Oversampling Technique (SMOTE) algorithm as a solution. Finally, we apply deep learning-based models, including Bi-GRU and TextCNN to perform penalty prediction, and compare their advantages and disadvantages.In the experimental result, for drunk driving case penalty prediction, our propose SMOTE + TextCNN solution can reach 73.96% of accuracy. If we allow the prediction to be plus or minus one month from the actual, the accuracy is 95.60%. As for the computation time, our proposed method can predict the penalty of 1,524 drunk driving cases per second.","PeriodicalId":117829,"journal":{"name":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"7 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On The Development of a Legal Penalty Prediction System for Drunk Driving Cases\",\"authors\":\"Meng-Luen Wu, Chen Lin, Po-Cheng Yu\",\"doi\":\"10.1109/ICMLC56445.2022.9941286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years, computer-aided penalty prediction have been promoted to gain people's trust to the judicial systems, especially in developing Chinese region. In this paper, we propose machine learning based models to predict the legal penalty of criminal cases. Particularly, we focus on drunk driving cases as they are frequent, and the regulations are clear. Unlike western text which words are separated by spaces, words in Chinese text are continuum. In our proposed method, we first use a word segmentation method to separate the Chinese words in text and apply a pre-trained model to convert words into vectors. In the vector space, words with similar meanings have short distance with each other. As the amount of each penalty varies greatly, resulting a data imbalance problem. Therefore, we adapt the Synthetic Minority Oversampling Technique (SMOTE) algorithm as a solution. Finally, we apply deep learning-based models, including Bi-GRU and TextCNN to perform penalty prediction, and compare their advantages and disadvantages.In the experimental result, for drunk driving case penalty prediction, our propose SMOTE + TextCNN solution can reach 73.96% of accuracy. If we allow the prediction to be plus or minus one month from the actual, the accuracy is 95.60%. As for the computation time, our proposed method can predict the penalty of 1,524 drunk driving cases per second.\",\"PeriodicalId\":117829,\"journal\":{\"name\":\"2022 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"7 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC56445.2022.9941286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC56445.2022.9941286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,为了赢得人们对司法系统的信任,特别是在中国发展中地区,计算机辅助刑罚预测得到了推广。在本文中,我们提出了基于机器学习的模型来预测刑事案件的法律处罚。我们特别关注酒后驾车案件,因为它们很频繁,而且规定很明确。与西方文本用空格分隔单词不同,汉语文本中的单词是连续的。在我们提出的方法中,我们首先使用分词方法将文本中的中文单词分离出来,并应用预训练的模型将单词转换为向量。在向量空间中,意思相近的词彼此之间的距离较短。由于每次惩罚的金额差异很大,导致数据不平衡问题。因此,我们采用合成少数派过采样技术(SMOTE)算法作为解决方案。最后,我们应用基于深度学习的模型,包括Bi-GRU和TextCNN来进行惩罚预测,并比较它们的优缺点。在实验结果中,对于酒驾案件处罚预测,我们提出的SMOTE + TextCNN方案可以达到73.96%的准确率。如果我们允许预测与实际相差正负一个月,则准确率为95.60%。在计算时间方面,我们提出的方法每秒可以预测1524个酒驾案件的处罚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On The Development of a Legal Penalty Prediction System for Drunk Driving Cases
Recent years, computer-aided penalty prediction have been promoted to gain people's trust to the judicial systems, especially in developing Chinese region. In this paper, we propose machine learning based models to predict the legal penalty of criminal cases. Particularly, we focus on drunk driving cases as they are frequent, and the regulations are clear. Unlike western text which words are separated by spaces, words in Chinese text are continuum. In our proposed method, we first use a word segmentation method to separate the Chinese words in text and apply a pre-trained model to convert words into vectors. In the vector space, words with similar meanings have short distance with each other. As the amount of each penalty varies greatly, resulting a data imbalance problem. Therefore, we adapt the Synthetic Minority Oversampling Technique (SMOTE) algorithm as a solution. Finally, we apply deep learning-based models, including Bi-GRU and TextCNN to perform penalty prediction, and compare their advantages and disadvantages.In the experimental result, for drunk driving case penalty prediction, our propose SMOTE + TextCNN solution can reach 73.96% of accuracy. If we allow the prediction to be plus or minus one month from the actual, the accuracy is 95.60%. As for the computation time, our proposed method can predict the penalty of 1,524 drunk driving cases per second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Semantic Segmentation for Vectorization of Line Drawings Based on Deep Neural Networks Real-Time Vehicle Counting by Deep-Learning Networks Unsupervised Representation Learning Method In Sensor Based Human Activity Recognition Improvement and Evaluation of Object Shape Presentation System Using Linear Actuators Examination of Analysis Methods for E-Learning System Grade Data Using Formal Concept Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1