基于反向哈希和剪接的多通道文本数据库关联规则挖掘

John D. Holt, S. M. Chung
{"title":"基于反向哈希和剪接的多通道文本数据库关联规则挖掘","authors":"John D. Holt, S. M. Chung","doi":"10.1109/TAI.2002.1180787","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new algorithm named multipass with inverted hashing and pruning (MIHP) for mining association rules between words in text databases. The characteristics of text databases are quite different from those of retail transaction databases, and existing mining algorithms cannot handle text databases efficiently because of the large number of itemsets (i.e., words) that need to be counted. Two well-known mining algorithms, the apriori algorithm and the direct hashing and pruning (DHP) algorithm, are evaluated in the context of mining text databases, and are compared with the proposed MIHP algorithm. It has been shown that the MIHP algorithm performs better for large text databases.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Mining association rules in text databases using multipass with inverted hashing and pruning\",\"authors\":\"John D. Holt, S. M. Chung\",\"doi\":\"10.1109/TAI.2002.1180787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new algorithm named multipass with inverted hashing and pruning (MIHP) for mining association rules between words in text databases. The characteristics of text databases are quite different from those of retail transaction databases, and existing mining algorithms cannot handle text databases efficiently because of the large number of itemsets (i.e., words) that need to be counted. Two well-known mining algorithms, the apriori algorithm and the direct hashing and pruning (DHP) algorithm, are evaluated in the context of mining text databases, and are compared with the proposed MIHP algorithm. It has been shown that the MIHP algorithm performs better for large text databases.\",\"PeriodicalId\":197064,\"journal\":{\"name\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.2002.1180787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种新的文本数据库词间关联规则挖掘算法——多通道倒哈希与剪接算法(multipass with倒哈希与剪接)。文本数据库的特征与零售交易数据库有很大的不同,现有的挖掘算法由于需要统计大量的项目集(即单词)而无法有效地处理文本数据库。在挖掘文本数据库的背景下,评估了两种著名的挖掘算法——先验算法和直接哈希和修剪(DHP)算法,并与所提出的MIHP算法进行了比较。研究表明,MIHP算法在大型文本数据库中表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining association rules in text databases using multipass with inverted hashing and pruning
In this paper, we propose a new algorithm named multipass with inverted hashing and pruning (MIHP) for mining association rules between words in text databases. The characteristics of text databases are quite different from those of retail transaction databases, and existing mining algorithms cannot handle text databases efficiently because of the large number of itemsets (i.e., words) that need to be counted. Two well-known mining algorithms, the apriori algorithm and the direct hashing and pruning (DHP) algorithm, are evaluated in the context of mining text databases, and are compared with the proposed MIHP algorithm. It has been shown that the MIHP algorithm performs better for large text databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning for software engineering: case studies in software reuse Active tracking and cloning of facial expressions using spatio-temporal information Fusing cooperative technical-specification knowledge components Ontology construction for information selection An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1