估计MECG从腹部ECG信号使用扩展卡尔曼RTS平滑

Yongkang Rao, Hao Zeng, Xin Li, Ye Li
{"title":"估计MECG从腹部ECG信号使用扩展卡尔曼RTS平滑","authors":"Yongkang Rao, Hao Zeng, Xin Li, Ye Li","doi":"10.1109/ICICIP.2015.7388147","DOIUrl":null,"url":null,"abstract":"Based on a modified nonlinear dynamic ECG model, this paper presents an extended Kalman Rauch-Tung-Strebel (RTS) smoother to estimate the maternal ECG (MECG). The MECG is the predominant interference in the estimation of fetal heart rate (FHR) from abdominal ECG signals, by which, the obstetricians can determine whether the fetus is in a state of distress. For the presented smoother, an automatic parameter selection method is offered to estimate ECG signal model parameters from abdominal ECG signals themselves. Performance analysis based on both synthetic and realistic abdominal ECG signals demonstrates that the extended Kalman RTS smoother is more accurate than conventional extended Kalman filter and outperforms the other methods, such as wavelet denoising (WD) or blind source separation (BSS), due to its low computational complexity and simpler lead configuration. The presented extended Kalman RTS smoother could be applied to long-term at-home monitoring of fetal well-being.","PeriodicalId":265426,"journal":{"name":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimate MECG from abdominal ECG signals using extended Kalman RTS smoother\",\"authors\":\"Yongkang Rao, Hao Zeng, Xin Li, Ye Li\",\"doi\":\"10.1109/ICICIP.2015.7388147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on a modified nonlinear dynamic ECG model, this paper presents an extended Kalman Rauch-Tung-Strebel (RTS) smoother to estimate the maternal ECG (MECG). The MECG is the predominant interference in the estimation of fetal heart rate (FHR) from abdominal ECG signals, by which, the obstetricians can determine whether the fetus is in a state of distress. For the presented smoother, an automatic parameter selection method is offered to estimate ECG signal model parameters from abdominal ECG signals themselves. Performance analysis based on both synthetic and realistic abdominal ECG signals demonstrates that the extended Kalman RTS smoother is more accurate than conventional extended Kalman filter and outperforms the other methods, such as wavelet denoising (WD) or blind source separation (BSS), due to its low computational complexity and simpler lead configuration. The presented extended Kalman RTS smoother could be applied to long-term at-home monitoring of fetal well-being.\",\"PeriodicalId\":265426,\"journal\":{\"name\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2015.7388147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Sixth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2015.7388147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

基于一种改进的非线性动态心电模型,提出了一种扩展的卡尔曼Rauch-Tung-Strebel (RTS)平滑算法来估计母体心电(MECG)。MECG是从腹部心电图信号中估计胎儿心率(FHR)的主要干扰,通过它,产科医生可以确定胎儿是否处于窘迫状态。为了提高心电信号的平滑度,提出了一种从腹部心电信号本身估计心电信号模型参数的自动参数选择方法。基于合成和真实腹部心电信号的性能分析表明,扩展卡尔曼RTS平滑比传统的扩展卡尔曼滤波更精确,并且由于其计算复杂度低和引线结构更简单,优于其他方法,如小波去噪(WD)或盲源分离(BSS)。所提出的扩展卡尔曼RTS平滑可以应用于胎儿健康的长期在家监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimate MECG from abdominal ECG signals using extended Kalman RTS smoother
Based on a modified nonlinear dynamic ECG model, this paper presents an extended Kalman Rauch-Tung-Strebel (RTS) smoother to estimate the maternal ECG (MECG). The MECG is the predominant interference in the estimation of fetal heart rate (FHR) from abdominal ECG signals, by which, the obstetricians can determine whether the fetus is in a state of distress. For the presented smoother, an automatic parameter selection method is offered to estimate ECG signal model parameters from abdominal ECG signals themselves. Performance analysis based on both synthetic and realistic abdominal ECG signals demonstrates that the extended Kalman RTS smoother is more accurate than conventional extended Kalman filter and outperforms the other methods, such as wavelet denoising (WD) or blind source separation (BSS), due to its low computational complexity and simpler lead configuration. The presented extended Kalman RTS smoother could be applied to long-term at-home monitoring of fetal well-being.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new integrable hamiltonian hierarchy and associated integrable coupling system Memristor-based neural network PID controller for buck converter Online critic-identifier-actor algorithm for optimal control of nonlinear systems Optimal control for deferrable loads scheduling under the constraint of electricity supply Performance analysis for WFRFT-OFDM systems to carrier frequency offset in doubly selective fading channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1