知识精细化文本分类的统计经验集成方法

N. Sailaja, L. P. Sree, N. Mangathayaru
{"title":"知识精细化文本分类的统计经验集成方法","authors":"N. Sailaja, L. P. Sree, N. Mangathayaru","doi":"10.1142/s0219649222500277","DOIUrl":null,"url":null,"abstract":"Automated text mining is an especially important task in modern data analysis, both from theoretical and experimental points of view. This particular problem has a major interest in the digital age that is related to “Artificial Intelligence, Machine learning and Information Retrieval”. Feature selection and classification of high dimensionality of text data are challenging tasks. In this paper, we adopted an optimal method for dealing with high dimensionality of data. Later, we chose an appropriate strategy (learning algorithm) for an effcient model training. Our empirical evaluation and experimental analysis show that the proposed method performs better compared with other variable selection-based dimension reduction and further text categorisation methods. We exploited several systematic and careful experimentation scenarios in this work to discover what architecture works best for this BBC news dataset. We used 3 hidden layers, each layer with 128 neurons. We observed this architecture optimal as per our specific problem experimentation. Moreover, our proposed method can be useful for improving efficiency and speed-up the calculations on certain datasets.","PeriodicalId":127309,"journal":{"name":"J. Inf. Knowl. Manag.","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistically Empirical Integrated Approach for Knowledge Refined Text Classification\",\"authors\":\"N. Sailaja, L. P. Sree, N. Mangathayaru\",\"doi\":\"10.1142/s0219649222500277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated text mining is an especially important task in modern data analysis, both from theoretical and experimental points of view. This particular problem has a major interest in the digital age that is related to “Artificial Intelligence, Machine learning and Information Retrieval”. Feature selection and classification of high dimensionality of text data are challenging tasks. In this paper, we adopted an optimal method for dealing with high dimensionality of data. Later, we chose an appropriate strategy (learning algorithm) for an effcient model training. Our empirical evaluation and experimental analysis show that the proposed method performs better compared with other variable selection-based dimension reduction and further text categorisation methods. We exploited several systematic and careful experimentation scenarios in this work to discover what architecture works best for this BBC news dataset. We used 3 hidden layers, each layer with 128 neurons. We observed this architecture optimal as per our specific problem experimentation. Moreover, our proposed method can be useful for improving efficiency and speed-up the calculations on certain datasets.\",\"PeriodicalId\":127309,\"journal\":{\"name\":\"J. Inf. Knowl. Manag.\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Knowl. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219649222500277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219649222500277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从理论和实验的角度来看,自动文本挖掘在现代数据分析中都是一项特别重要的任务。这个特殊的问题在数字时代与“人工智能、机器学习和信息检索”相关。高维文本数据的特征选择和分类是一项具有挑战性的任务。本文采用了一种最优方法来处理高维数据。然后,我们选择合适的策略(学习算法)来进行有效的模型训练。我们的实证评估和实验分析表明,与其他基于变量选择的降维和进一步的文本分类方法相比,本文提出的方法具有更好的性能。在这项工作中,我们利用了几个系统和仔细的实验场景来发现哪种架构最适合这个BBC新闻数据集。我们使用了3个隐藏层,每层有128个神经元。根据我们的特定问题实验,我们观察到这种架构是最优的。此外,我们提出的方法可用于提高某些数据集的计算效率和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistically Empirical Integrated Approach for Knowledge Refined Text Classification
Automated text mining is an especially important task in modern data analysis, both from theoretical and experimental points of view. This particular problem has a major interest in the digital age that is related to “Artificial Intelligence, Machine learning and Information Retrieval”. Feature selection and classification of high dimensionality of text data are challenging tasks. In this paper, we adopted an optimal method for dealing with high dimensionality of data. Later, we chose an appropriate strategy (learning algorithm) for an effcient model training. Our empirical evaluation and experimental analysis show that the proposed method performs better compared with other variable selection-based dimension reduction and further text categorisation methods. We exploited several systematic and careful experimentation scenarios in this work to discover what architecture works best for this BBC news dataset. We used 3 hidden layers, each layer with 128 neurons. We observed this architecture optimal as per our specific problem experimentation. Moreover, our proposed method can be useful for improving efficiency and speed-up the calculations on certain datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Management in Higher Education in Vietnam: Insights from Higher Education Leaders - An Exploratory Study The Organisation's Size-Innovation Performance Relationship: The Role of Human Resource Development Mechanisms A Comparative Review of Sentimental Analysis Using Machine Learning and Deep Learning Approaches Vocational Education Information Technology Based on Cross-Attention Fusion Knowledge Map Recommendation Algorithm Redesigning Knowledge Management Through Corporate Sustainability Strategy in the Post-Pandemic Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1