脉冲宽度调制(PWM)信号使用尖峰神经元网络

Maisam Jalilian, M. Nouri, A. Ahmadi, Nabeeh Kandalaft
{"title":"脉冲宽度调制(PWM)信号使用尖峰神经元网络","authors":"Maisam Jalilian, M. Nouri, A. Ahmadi, Nabeeh Kandalaft","doi":"10.1109/ICSIPA.2017.8120602","DOIUrl":null,"url":null,"abstract":"This paper proposes a digital construction of Pulse Width Modulation (PWM) signals based on the Izhikevich neuron model using a Field Programmable Gate Array (FPGA) platform. The signals are intended for use in diverse electronics applications such as robotics and power converters. A spiking pattern was used to generate the input data and produce the PWM signals. A comparator was used to compare between the spiking pattern data and DC level parameters. The results validate that the proposed hardware can reproduce PWM signals with duty cycles from 0% to 100%.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pulse width modulation (PWM) signals using spiking neuronal networks\",\"authors\":\"Maisam Jalilian, M. Nouri, A. Ahmadi, Nabeeh Kandalaft\",\"doi\":\"10.1109/ICSIPA.2017.8120602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a digital construction of Pulse Width Modulation (PWM) signals based on the Izhikevich neuron model using a Field Programmable Gate Array (FPGA) platform. The signals are intended for use in diverse electronics applications such as robotics and power converters. A spiking pattern was used to generate the input data and produce the PWM signals. A comparator was used to compare between the spiking pattern data and DC level parameters. The results validate that the proposed hardware can reproduce PWM signals with duty cycles from 0% to 100%.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于Izhikevich神经元模型的脉宽调制(PWM)信号的数字化构建方法,该方法采用现场可编程门阵列(FPGA)平台。这些信号旨在用于各种电子应用,如机器人和电源转换器。采用尖峰模式产生输入数据并产生PWM信号。使用比较器比较尖峰模式数据和直流电平参数。结果表明,所提出的硬件可以再现占空比从0%到100%的PWM信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulse width modulation (PWM) signals using spiking neuronal networks
This paper proposes a digital construction of Pulse Width Modulation (PWM) signals based on the Izhikevich neuron model using a Field Programmable Gate Array (FPGA) platform. The signals are intended for use in diverse electronics applications such as robotics and power converters. A spiking pattern was used to generate the input data and produce the PWM signals. A comparator was used to compare between the spiking pattern data and DC level parameters. The results validate that the proposed hardware can reproduce PWM signals with duty cycles from 0% to 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1