TIG焊接电弧控制器的应用综述

A. Paul
{"title":"TIG焊接电弧控制器的应用综述","authors":"A. Paul","doi":"10.22486/IWJ.V52I2.181778","DOIUrl":null,"url":null,"abstract":"An arc welding joint could utilize the features of discretely different arc welding methods to obtain the desired joint characteristics. The continuous improvement in arc welding controllers has helped redefine the need of proper parametric control of the process. For efficiency and productivity improvement, modern arc controllers come handy to re-define various aspects of the process (e.g. metal transfer, arc stiffness, etc.). One fascinating outcome is the virtual convergence of complete multi-functional arc welding process to GMAW. Still, there are applications where SMAW and TIG welding processes are regularly being used. Like other welding methods, TIG welding, as well, consists of several derivative approaches. For example, for creating joints of reactive metals (aluminum or magnesium), the AC-TIG welding is commonly employed. Here, the role of arc controller is to generate consistent pattern of desirable rectangular shape AC current waveform through the arc gap. It could cause severe stress (during polarity transition) in all secondary side components of the controller. This review, using indigenously designed peripheral interface controller (PIC) based arc welding inverter, explains the role of arc controllers to handle issues of majority of TIG welding applications.","PeriodicalId":393849,"journal":{"name":"Indian Welding Journal","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arc Controllers for TIG Welding Applications:A Review\",\"authors\":\"A. Paul\",\"doi\":\"10.22486/IWJ.V52I2.181778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An arc welding joint could utilize the features of discretely different arc welding methods to obtain the desired joint characteristics. The continuous improvement in arc welding controllers has helped redefine the need of proper parametric control of the process. For efficiency and productivity improvement, modern arc controllers come handy to re-define various aspects of the process (e.g. metal transfer, arc stiffness, etc.). One fascinating outcome is the virtual convergence of complete multi-functional arc welding process to GMAW. Still, there are applications where SMAW and TIG welding processes are regularly being used. Like other welding methods, TIG welding, as well, consists of several derivative approaches. For example, for creating joints of reactive metals (aluminum or magnesium), the AC-TIG welding is commonly employed. Here, the role of arc controller is to generate consistent pattern of desirable rectangular shape AC current waveform through the arc gap. It could cause severe stress (during polarity transition) in all secondary side components of the controller. This review, using indigenously designed peripheral interface controller (PIC) based arc welding inverter, explains the role of arc controllers to handle issues of majority of TIG welding applications.\",\"PeriodicalId\":393849,\"journal\":{\"name\":\"Indian Welding Journal\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Welding Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22486/IWJ.V52I2.181778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Welding Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22486/IWJ.V52I2.181778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

弧焊接头可以利用离散的不同弧焊方法的特点来获得所需的接头特性。弧焊控制器的不断改进有助于重新定义对工艺进行适当参数控制的需求。为了提高效率和生产力,现代电弧控制器可以方便地重新定义工艺的各个方面(例如金属转移,电弧刚度等)。一个令人着迷的结果是完整的多功能弧焊过程虚拟收敛到GMAW。尽管如此,还是有一些应用经常使用SMAW和TIG焊接工艺。与其他焊接方法一样,TIG焊接也由几种派生方法组成。例如,为了制造活性金属(铝或镁)的接头,通常采用交流tig焊接。在这里,电弧控制器的作用是通过电弧间隙产生一致的理想矩形交流电流波形。它可能会在控制器的所有次要侧组件中造成严重的应力(在极性转换期间)。本文利用自主设计的基于外围接口控制器(PIC)的弧焊逆变器,解释了弧焊控制器在处理大多数TIG焊应用问题中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arc Controllers for TIG Welding Applications:A Review
An arc welding joint could utilize the features of discretely different arc welding methods to obtain the desired joint characteristics. The continuous improvement in arc welding controllers has helped redefine the need of proper parametric control of the process. For efficiency and productivity improvement, modern arc controllers come handy to re-define various aspects of the process (e.g. metal transfer, arc stiffness, etc.). One fascinating outcome is the virtual convergence of complete multi-functional arc welding process to GMAW. Still, there are applications where SMAW and TIG welding processes are regularly being used. Like other welding methods, TIG welding, as well, consists of several derivative approaches. For example, for creating joints of reactive metals (aluminum or magnesium), the AC-TIG welding is commonly employed. Here, the role of arc controller is to generate consistent pattern of desirable rectangular shape AC current waveform through the arc gap. It could cause severe stress (during polarity transition) in all secondary side components of the controller. This review, using indigenously designed peripheral interface controller (PIC) based arc welding inverter, explains the role of arc controllers to handle issues of majority of TIG welding applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case Study - Controlling Distortion During Welding of a Composite Joint where Post Weld Machining is involved Weld Overlay Restoration of Forged DI Pipe Moulds A Comparative Study on Corrosion Resistance of using Copper and Nickel Buttering Layer on Low Carbon Steel while Cladding with Austenitic Stainless Steel Estimation of Bead on Plate Geometry of Super Duplex Stainless Steel on Low Carbon Steel using Artificial Neural Networks The Tensile, Hardness and Impact Behaviour of Friction Stir Welded Similar and Dissimilar Aluminium Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1